Complex disaster has disabled the ordinary communication system. For example, fire on LTE routers and their power supply interrupted communication. In our disaster react robot system, we suggested a portable and battery-powered Wi-Fi module dropped by reconnaissance robots. As a result, the communication speed was extremely limited. In this paper, we proposed a global map generation strategy to overcome this communication limit. Our key approach involved the conversion of heterogeneous local maps to 2D occupancy grid maps. The 2D map was treated as an image and image stitching algorithm was applied to build the global map. We made various local map scenarios and applied our global map building algorithms. In conclusion, our proposed strategy was verified with the real robot test.
As life expectancy becomes longer, reduction of human muscular strength threatens quality of human life. Many robotic devices have thus been developed to support and help human daily life. This paper deals with a new type of in-wheel actuator that can be effectively used for the robotic devices. BLDC motor, drive board, brake, ARS (Attribute Reference System), and torque sensor are combined in the single actuator module. The torque sensor is used to recognize human intention and the in-wheel actuator drives walking aids in our system. Its feasibility was tested with the active walking aid device equipped with the in-wheel actuator. Based on it, we designed an admittance filter algorithm to react on uphill and downhill drive. By adjusting mass, damping, and spring parameters in accordance with the ARS output, it provided convenient drive to the old on uphill and downhill walks.