This study aimed to characterize the mechanism of thermal runaway phenomenon in lithium-ion batteries, which represent secondary cells among energy storage devices. Thermal runaway reaction was induced by heating 18650 cells with 5%, 40%, and 80% state of charge (SOC). We divided the thermal runaway of the battery into three stages and discussed the physical measurements that distinguish each stage. We also provided a visual comparison and thermal image of the characterized exhaust gases in all stages. The state of charge and the amount of heat generated by thermal runaway were proportional, and in the third stage of thermal runaway, where the highest mass transfer occurred, 40% of SOC released gas for 13 seconds and 80% of SOC emitted gas and flame for 3 seconds. In addition, a temperature and voltage measurement method that can predict the thermal runaway phenomenon of a battery is presented.
Citations
Citations to this article as recorded by
An Experimental Study on the Thermal Runaway Characteristics of Single and Multiple Lithium-Ion Cells Ho-Sik Han, Gyu-Hwan Cho, Hong-Seok Yun Fire Science and Engineering.2025; 39(5): 13. CrossRef
In this paper, theoretical and experimental studies were conducted on the cooling performance of a microchannel heat dissipation device with a manifold layer added. By adding 500 μm wide microchannels and manifold flow fields, the rheological properties of the cooling fluid were enhanced to improve the heat transfer performance. The size of the microchannel used for cooling was 40 × 40 × 5 mm, and was evaluated under a heat flux of 12.5-43.75 W/㎠ and a flow rate of 0.3-1.1 L /min conditions. As a result of the experiment, in the case of a microchannel heat sink of 500 μm compared to the existing heat sink, cooling was successfully performed under a heat flux condition of about four times
Citations
Citations to this article as recorded by
Thermal Design of Heatsink for M.2 NVMe SSD Reliability Chan Ho Kim, Jinsung Rho, Joong Bae Kim Journal of the Korean Society for Precision Engineering.2023; 40(5): 389. CrossRef