Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"K-nearest neighbor"

Article category

Keywords

Publication year

Authors

"K-nearest neighbor"

Articles
Wear Estimation of an Intelligent Tire Using Machine Learning
Jun Young Han, Ji Hoon Kwon, Hyeong Jun Kim, Suk Lee
J. Korean Soc. Precis. Eng. 2023;40(2):113-121.
Published online February 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.107
Tire-related crashes account for a large proportion of all types of car accidents. The causes of tire-related accidents are inappropriate tire temperature, pressure, and wear. Although temperature and pressure can be monitored easily with TPMS, there exists no system to monitor tire wear regularly. This paper proposes a system that can estimate tire wear using a 3-axis accelerometer attached to the tread inside the tire. This system utilizes axial acceleration, extracts feature from data acquired with the accelerometer and estimates tire wear by feature classification using machine learning. In particular, the proposed tire wear estimation method is designed to estimate tread depth in four types (7, 5.6, 4.2, and 1.4 mm) at speeds of 40, 50, and 60 kmph. Based on the data obtained during several runs on a test track, it has been found that this system can estimate the tread depth with reasonable accuracy.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Wheel Member Condition Recognition Using 1D–CNN
    Jin-Han Lee, Jun-Hee Lee, Chang-Jae Lee, Seung-Lok Lee, Jin-Pyung Kim, Jae-Hoon Jeong
    Sensors.2023; 23(23): 9501.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Development of Diagnosis Algorithm for Cam Wear of Paper Container Using Machine Learning
Seolha Kim, Jaeho Jang, Baeksuk Chu
J. Korean Soc. Precis. Eng. 2019;36(10):953-959.
Published online October 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.10.953
Recently, improvement of productivity of the paper cup forming machine has being conducted by increasing manufacturing speed. However, rapid manufacturing speed imposes high load on cams and cam followers. It accelerates wear and cracking, and increases paper cup failure. In this study, a failure diagnosis algorithm was suggested using vibration data measured from cam driving parts. Among various paper cup forming processes, a test bed imitating the bottom paper attaching process was manufactured. Accelerometers were installed on the test bed to collect data. To diagnose failure from measured data, the K-NN (K-Nearest Neighbor) classifier was used. To find a decision boundary between normal and abnormal state, learning data were collected from normal and abnormal state, and normal and abnormal cams. A few representative features such as mean and variance were selected and transformed to the relevant form for the classifier. Classification experiments were performed with the developed classifier and data gathered from the test bed. According to assigned K values, a successful classification result was obtained which means appropriate failure recognition.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on 3D Printing Conditions Prediction Model of Bone Plates Using Machine Learning
    Song Yeon Lee, Yong Jeong Huh
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 291.     CrossRef
  • 8 View
  • 0 Download
  • Crossref