This paper presents a vision system for machined hole quality inspection of mechanical parts in an automobile. Automobile parts have various shapes and holes created by press punches. However, if the press punch pin is broken, a hole is not created on the mechanical parts. This problem causes serious part quality defects. To solve this problem, we proposed a vision system that could easily and cheaply inspect the quality of holes in automotive machining parts. A software development environment was created to build an economical vision inspection system. Images were gathered using the Near-real-time method to overcome the low frame-per-second of inexpensive Complementary Metal Oxide Semiconductor (CMOS) webcams. Status of the hole was determined using template matching and distance between holes as a feature. The hardware required for vision inspection was designed so that it could be directly applied to the automotive part manufacturing process. When the proposed vision inspection system was tested by installing it in an automobile parts factory for 3 months, the system showed an inspection accuracy of at least 97.9%. This demonstrates the effectiveness of the proposed method with accuracy and speed of hole defect inspection of machined parts.
The influence of tire belt angle on the Plysteer Residual Aligning Torque(PRAT) and the cornering stiffness by the FEM has been studied. The PRAT is a performance factor of the tire about vehicle pull, and the cornering stiffness has relation to vehicle steering response of outdoor test. To validate FE model for analysis, simulation data for both the static stiffness(vertical, lateral) and the PRAT have been compared with the experimental data. In addition to the characteristics of the PRAT and the cornering stiffness due to the tire belt angle, rolling and cornering contact characteristics have been studied. The tendency of the PRAT and the cornering stiffness due to the belt angle can be used as a guide line for the tire design in relation to vehicle pull and vehicle steering response.