Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Kinematic error"

Article category

Keywords

Publication year

Authors

"Kinematic error"

Regular
Estimation of Kinematic Parameters of a 6-Axis Serial Robot through a Circular Test Using a Double Ball-Bar
Heung Ki Jeon, Sung Hwan Kweon, Kwang Il Lee, Seung Han Yang
J. Korean Soc. Precis. Eng. 2026;43(1):69-77.
Published online January 1, 2026
DOI: https://doi.org/10.7736/JKSPE.025.079
This study introduces a straightforward and cost-effective method to enhance the positional accuracy of a 6-axis serial robot using a double ball-bar (DBB). Kinematic errors, a primary source of inaccuracies in offline programming, are estimated and calibrated through circular tests. The kinematics of the robot are modeled using the Denavit-Hartenberg (D-H) convention, and a mathematical relationship between radial deviation and kinematic errors is established. To avoid singularities, identifiable parameters are selected using singular value decomposition. The method involves three steps: measuring the tool center point (TCP) with the DBB, estimating key kinematic parameters, and verifying the calibration results. Redundant or less significant parameters are excluded to concentrate on the most impactful ones. During the process, the robot is commanded to trace a circular path while radial deviations are recorded. This data is then utilized to estimate and adjust the kinematic model. After recalculating and executing the circular path with the calibrated model, a notable reduction in deviation is achieved. This proposed approach requires no additional equipment and provides a quick, affordable solution for improving the accuracy of industrial robots while lowering maintenance costs.
  • 487 View
  • 7 Download