In the heating and drying system using microwaves, an optimal design method was presented to effectively shield microwaves leakage between the door and the cylindrical applicator. In order to protect the human body from leaking microwaves, it is necessary to keep the intensity of microwaves below 5 mW/cm². The door part adopts a choke structure and includes a number of design factors, such as, fin shape, slit shape, and a gap between the applicator and the door. The geometry was optimized by design of experiments, applying full factorial design and response surface method in a 4-factor, 2-level design. The results obtained by ANSYS HFSS analysis were applied to the intensity of microwave leakage according to the change of the design factors. The shape of the choke structure was optimized using Minitab, a statistical program. The microwave heating and drying system was manufactured based on optimal design value and the leakage of microwaves between the door and the applicator was measured. We confirmed that the experimental values were consistent with the simulation values.
By patterning finely with a laser with a thickness of 100 μm or less such as ABS and forming an electronic circuit through plating, a high-density flexible PCB applicable to wearable and mobile devices can be realized. ABS films with a thickness of 60, 90, and 120 μm were prepared, and a crater measuring 100 μm or less was formed by irradiating a fiber laser with a wavelength of 1064 nm with a single pulse. The size of the craters is affected by the intensity of laser irradiation and the thickness of the film, and the heat dissipation layer reduces the change in size caused by the difference in the thickness of the film. For films with a thickness of 60 μm, it has been found that small craters of more than 10% can be obtained due to the heat dissipation layer. Thermal analysis showed in the ABS film without the heat dissipation layer, the maximum temperature increased to 373oC, but decreased to 261℃ in the ABS film with the heat dissipation layer. With a decrease in the thickness of the film, the heat dissipation layer further reduces the pattern by laser irradiation.
A flexible-rigid multibody analysis was performed to examine the dynamic response of a heavy handling robot system under a worst motion scenario. A rigid body dynamics analysis was solved and compared with flexible-rigid multibody analysis. The modal analysis and test were also carried out to establish the accuracy and the validation of the finite element model used in this paper. For the flexible-rigid multibody simulation, stresses in several major bodies were interested, so that those parts are flexible and other parts are modeled as rigid body in order to reduce computer resources.
In general, fretting is a contact damage process due to micro-slip associated with small amplitude oscillatory movement between two surfaces in contact. Previous studies in fretting fatigue have observed a contact size effect related to contact width. The volume-averaging method of theoretically predicted contact stress fields was required to emulate experimental trends and to predict the observed contact size effects. This contact size effect is captured by the mean values of stresses and strains at the element integration points of FE model and two critical plane models (SWT, FS) in the present paper. It is shown that crack nucleation and fretting fatigue life can be predicted by the FE-based critical plane models.
Recently, a lot of work and interest have been devoted to the development of multiaxial fatigue parameters for fretting fatigue life prediction. In this study, the fretting fatigue life and critical location ware estimated and evaluated through the multiaxial fatigue theories in a cylinder-on-flat contact configuration for Cr-Mo steel, SCM420, the material commonly is used in gears of the automobile and rollers of the conveyor. The strain-life curve was obtained from fatigue test for SCM420. The Fretting fatigue life and critical location were estimated through stress distributions, SWT-parameters and FS-parameters obtained from FEA. This paper showed possibility of applying multi axial fatigue theories to fretting fatigue life prediction comparing predicted life with experimental results.