Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Laser micro machining"

Article category

Keywords

Publication year

Authors

"Laser micro machining"

Articles
A Study of Femtosecond Laser Ablation Threshold on Several Materials Using Fiber Optic Beam Delivery System
Junha Choi, Young Gwan Shin, Hoon Young Kim, Wonsuk Choi, Jae-Gu Kim, Won-Seok Chang, Jae-sung Yoon, Sung-Hak Cho
J. Korean Soc. Precis. Eng. 2020;37(12):865-872.
Published online December 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.066
A femtosecond laser is used in various fields such as microscale machining, OLED repair, micro 3D structure fabrication, and eye surgery. Particularly, because of non-thermal property, ablation and ablation threshold are the most representative characteristics of femtosecond laser. The ablation system is accompanied by many optics, stage, or gantry. In the case of the gantry, an ordinary optic system delivers a beam where mirrors and lens are required. If the gantry moves to the sample, external stimulation such as vibration will occur. Vibration has an influence on optics such as transforming beam path and becomes an error that decreases accuracy, precision, and spatial resolution. Generally, Fiber Optic Beam Delivery System (FOBDS) is used to solve this issue. But in the case of the femtosecond laser, FOBDS is incompatible. Recently, another FOBDS model that is compatible with the femtosecond laser has been developed. In this paper, the ablation threshold was obtained by FOBDS and femtosecond laser. The results present a possibility of ablation without external stimulation.

Citations

Citations to this article as recorded by  Crossref logo
  • 257 nm Deep UV Femtosecond Laser Ablation with Minimized Crack and Chipping on Display Ultra-Thin Glass
    Kwangwoo Cho, Junha Choi, Changdeok Ko, Muhyun Kim, Joohan Lee, Eunhyang Eom, Sung-Hak Cho
    International Journal of Precision Engineering and Manufacturing.2024; 25(2): 271.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
A Study on the Machinability of Tungsten Carbide Using Ultrafast Laser
Young Gwan Shin, Wonsuk Choi, Hoon Young Kim, Sung-Hak Cho
J. Korean Soc. Precis. Eng. 2020;37(10):719-727.
Published online October 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.024
The tungsten carbide is a material with high hardness, wear resistance, good chemical stability, and dimensional stability. Because of these characteristics, it is mainly used as a tool for cutting and molding such as molds, and casts required for manufacturing high value-added equipment such as automobile parts and medical equipment. However, it is difficult to process with the traditional machining methods because of the high toughness and hardness. To overcome these problems, a study of tungsten carbide machining processing using the ultrafast-laser was recently conducted. In this paper, the ultrafast lasers with the pulse duration of 190 fs, 5 and 10 ps, respectively, were used. When the experiments were conducted with pulse widths of 5 and 10 ps, respectively, micro-cracks were observed from the heat generated by the overlap of the laser pulses. Conversely, the machining processing using a laser with the pulse width of 190 fs showed a major advantage with no crack by minimizing the thermal effects.
  • 5 View
  • 0 Download
Micro Machining of CFRP Using Nanosecond Pulsed Fiber Laser
Do Kwan Chung, Jin Sung Park, Ki Hun Kim
J. Korean Soc. Precis. Eng. 2019;36(9):783-791.
Published online September 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.9.783
CFRP (Carbon fiber reinforced plastic) has been widely used in different industries such as aerospace, automobile, sports and medical. Laser processing of CFRP has a great potential for industrial applications. In this paper researched the micro cutting and drilling of CFRP with 0.5 mm thickness using 1064 nm ytterbium nanosecond pulsed fiber laser. It also investigated machining characteristics of micro cutting and drilling according to laser power, frequency, scan speed and number of scan (or irradiation). Complete cutting and through-hole drilling were achieved with low frequency when the laser power was low and with low and middle frequency when the laser power increased. However, those were not achieved a frequency of 100 kHz. The cutting width increased when the power increased and decreased when the frequency and the scan speed increased. The hole size increased when the power and the number of irradiation increased and decreased when the frequency increased. In the case of micro hole array, the hole was blocked during the next hole machining when the hole spacing was narrow. The resin was melted by the heat thus blocking the pre-drilled hole. We devised the laser scan method, and the micro hole array with narrow hole spacing was fabricated successfully.

Citations

Citations to this article as recorded by  Crossref logo
  • Laser Drilling of Micro-Hole Array on CFRP Using Nanosecond Pulsed Fiber Laser
    Do Kwan Chung
    Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(5): 92.     CrossRef
  • Laser EDM Hybrid Micro Machining of CFRP
    Do Kwan Chung, Chan Ho Han, Yu Jin Choi, Jun Seo Park
    Journal of the Korean Society for Precision Engineering.2023; 40(2): 99.     CrossRef
  • Micro Pin Fabrication of Tungsten Carbide Using Polycrystalline Diamond
    Joo A Park, Ui Seok Lee, Bo Hyun Kim
    Journal of the Korean Society for Precision Engineering.2020; 37(11): 791.     CrossRef
  • 7 View
  • 0 Download
  • Crossref