This paper describes the design of a 4-axis SCARA-Type robot in the form of a scalar robot for the loading and unloading of workpieces in machine tools. The 4-axis dedicated robot is a 4-degrees-of-freedom robot consisting of a joint 1, 2, 3 motor and a 180° rotating gripper made up of a horizontal gripper and a vertical gripper. It was designed in a scalar shape that is suitable for machine tools, and the size of each link and elbow was determined through structural analysis. Through additional structural analysis, the deflection of the end center of the workpiece fixed to the horizontal gripper and the vertical gripper was designed to be within 0.1 mm, and based on the design result, a 4-axis SCARA-Type robot was manufactured, and the basic motion characteristics of the manufactured robot were tested. As a result of the characteristic test, the manufactured 4-axis SCARA-Type robot operated smoothly, so it is judged to be adequate for usage in loading and unloading the workpieces in machine tools.
Citations
Citations to this article as recorded by
Design and develop a robot arm to automatically feed workpieces for laser engraving machines Trung Xuan, Duy Anh FME Transactions.2024; 52(4): 671. CrossRef
5-Axis Robot Design for Loading and Unloading Workpieces Han-Sol Kim, Gab-Soon Kim International Journal of Precision Engineering and Manufacturing.2023; 24(12): 2279. CrossRef
In this paper, the topology optimization method was used to describe the lightweight design of link structures for an amphibious boat. Topology optimization was used to determine the optimum density distribution of the structure. The analysis revealed that the link structures for amphibious boat can be reduced up to 31 percent by weight without altering the design of the connected and supported parts. The structural integrity of the proposed lightweight link structures was evaluated via topology optimization and verified by finite element analysis and static test. The structural integrity of lightweight link structures was found to meet the design requirements. The running stability of amphibious boat with lightweight link structures was verified via ground and water driving tests.
Citations
Citations to this article as recorded by
Optimal Design and Experimental Validation of the Rib Structure of a Manufacturing Machine Bed Using Topology Optimization Ji-Sang Hwang, Sung-Jae Kim, Jeong-Hyun Yoon, Chul-Hoon Sung Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(6): 374. CrossRef
Study on the Optimal Design of Column Rib Structure of Horizontal Machine Tool Using Topology Optimization Technique Ji-Sang Hwang, Sung-Jae Kim, Chul-Hoon Sung Journal of the Korean Society of Manufacturing Technology Engineers.2023; 32(1): 1. CrossRef
Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho Journal of the Korean Society for Precision Engineering.2023; 40(9): 719. CrossRef
Designing the internal reinforcements of a sailing boat using a topology optimization approach Antonio Mancuso, Antonio Saporito, Davide Tumino Applied Ocean Research.2022; 129: 103384. CrossRef
A Study on Injection Mold Design Using Topology Optimization Mi-Jin Kim, Jae-Hyuk Choi, Gyeng-Yun Baek Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(4): 100. CrossRef
Lightweight Design of a Vacuum Gripper for Inspection Equipment Using Topology Optimization Euddeum Cha, Tae-Young Kim, Taeho Ha, Keun Park Journal of the Korean Society for Precision Engineering.2021; 38(9): 683. CrossRef
Optimal Design for Strength Improvement of Support Bracket for Sanding Device of Railway Vehicle Using Topology Optimization Yonho Cho, Woohyuck Yoon Journal of the Korean Society for Precision Engineering.2020; 37(4): 263. CrossRef
Lightweight Design of a Sledge Frame for Para Ice Hockey Using Design for Additive Manufacturing Eun-Ji Oh, Ju-Hye Lee, Jae-Eun Kim, Keun Park Journal of the Korean Society for Precision Engineering.2020; 37(6): 407. CrossRef
This study shows the 4 - Bar linkage design process and static/dynamic stability analysis of a foldable electric wheelchair that can be loaded into a vehicle for long-distance trips. Conventional foldable electric wheelchairs have been developed for indoor use because the safety of the disabled is not secure enough for outdoor use. However, the disabled have generally used foldable electric wheelchairs for outdoor use, potentially putting themselves in a dangerous situation. The body of a foldable electric wheelchair consists of a double 4 - Bar linkage system that shares one link. The architecture of the wheelchair’s four-bar linkage frame was synthesized using four finitely separated design positions. This simple method can design a planar four-bar mechanism through the use of four finitely separated poses (orientation and position). The power driving module includes a battery and controller, and can be separated to load into a car easily. An analysis of the tip-over measurement was performed using ADAMS and LifeMOD during a maneuver on the ground. by force-moment stability metric. Several elements, including the center of gravity position, rotational radius, and acceleration, were evaluated how to affect stability metric.
Citations
Citations to this article as recorded by
A study on the formative usability testing for modular powered wheelchair Jin Hong Kim, Yu Ri Kim, Mi Hyang Han, Soul Han, Eun hye Jeon, Eun Young Hwang, Jae Won Yang, Seon Yeong Lee, Gangpyo Lee Disability and Rehabilitation: Assistive Technology.2025; 20(2): 452. CrossRef