In order to monitor the machining status of a machine tool, it is necessary to measure the signal of the machine tool and establish the relationship between the machining status and the signal. One effective approach is to utilize an AIbased analysis model. To improve the accuracy and reliability of AI models, it is crucial to identify the features of the model through signal analysis. However, when dealing with time series data, it has been challenging to identify these features. Therefore, instead of directly applying time series data, a method was used to extract the best features by processing the data using techniques such as RMS and FFT. Recently, there have been numerous reported cases of designing AI models with high accuracy and reliability by directly applying time series data to find the best features, particularly in the case of AI models combining CNN and LSTM. In this paper, time series data obtained through a gap sensor are directly applied to an AI model that combines CNN, LSTM, and MLP (Multi-Layer Perceptron) to determine tool wear. The machine tool and tool status were monitored and evaluated through an AI model trained using time series data from the machining process.
Citations
Citations to this article as recorded by
Development of AI-based Bearing Machining Process Defect Monitoring System Dae-Youn Kim, Dongwoo Go, Seunghoon Lee Journal of Society of Korea Industrial and Systems Engineering.2025; 48(3): 112. CrossRef
A Review of Intelligent Machining Process in CNC Machine Tool Systems Joo Sung Yoon, Il-ha Park, Dong Yoon Lee International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2243. CrossRef
Brain-computer interface (BCI) is a technology used in various fields to analyze electroencephalography (EEG) signals to recognize an individual"s intention or state and control a computer or machine. However, most of the research on BCI is on motor imagery, and research on active movement is concentrated on upper limb movement. In the case of lower limb movement, most of the research is on the static state or single movements. Therefore, in this research, we developed a deep-learning model for classifying walking behavior(1: walking, 2: upstairs, 3: downstairs) based on EEG signals in a dynamic environment to verify the possibility of classifying EEG signals in a dynamic state. We developed a model that combined a convolutional neural network (CNN) and a bidirectional long short-term memory (BiLSTM). The model obtained an average recognition performance of 82.01%, with an average accuracy of 93.77% for walking, 76.52% for upstairs, and 75.75% for downstairs. It is anticipated that various robotic devices aimed at assisting people with disabilities and the elderly could be designed in the future with multiple features, such as human-robot interaction, object manipulation, and path-planning utilizing BCI for control.
The objective of this study is to investigate a novel temperature and humidity prediction algorithm for smart greenhouse based on the machine learning method. The smart greenhouse is known to increase farm production by automatically controlling temperature and humidity and other factors. However, maintaining constant inside temperature and humidity in the conventional smart greenhouse system is still a problem because of the multiple time delay elements. To solve the problems, prediction control scheme is required. But, since the system is highly nonlinear with the lack of sensory data, predicting accurate temperature and humidity is very challenging. In this paper, the multi-dimensional Long Short-Term Memory networks (LSTMs) is being applied to deal with the unstructured greenhouse environmental data. The designed LSTMs learning model is trained with the 27 dimensional data which comprises of all the greenhouse control parameter and environmental sensory data. The prediction performance was evaluated using the short, mid and long term experiments. Also, the comparison with the conventional recurrent neural networks (RNNs) based prediction algorithm was done using the experimental results and later on discussions.
Citations
Citations to this article as recorded by
Data-Driven Optimization Method for Recurrent Neural Network Algorithm: Greenhouse Internal Temperature Prediction Model Kwang Cheol Oh, Sunyong Park, Seok Jun Kim, La Hoon Cho, Chung Geon Lee, Dae Hyun Kim Agronomy.2024; 14(11): 2545. CrossRef
Development and Verification of Smart Greenhouse Internal Temperature Prediction Model Using Machine Learning Algorithm Kwang Cheol Oh, Seok Jun Kim, Sun Yong Park, Chung Geon Lee, La Hoon Cho, Young Kwang Jeon, Dae Hyun Kim Journal of Bio-Environment Control.2022; 31(3): 152. CrossRef
Deep-Learning Temporal Predictor via Bidirectional Self-Attentive Encoder–Decoder Framework for IOT-Based Environmental Sensing in Intelligent Greenhouse Xue-Bo Jin, Wei-Zhen Zheng, Jian-Lei Kong, Xiao-Yi Wang, Min Zuo, Qing-Chuan Zhang, Seng Lin Agriculture.2021; 11(8): 802. CrossRef