A magnetic levitation system (MLS) controls the position of a steel ball with the magnetic force of the electromagnetic actuator. A disturbance observer (DOB) could improve the disturbance rejection and command tracking performance of the voltage-controlled MLS. This paper studied control boost of MLS using current and position DOB. The current-controlled MLS had a higher control performance than the voltage-controlled MLS. The combination of PID position and PI current controls provided stable levitation and a wide operation range of MLS. When DOB was applied to PI current control, it could compensate for inductance change according to the position of the steel ball. In addition, when another DOB was introduced to the PID position control, it improved the disturbance removal performance. Finally, we discussed the effectiveness and limitations of the DOB-based current and position control by measuring closed-loop frequency responses.
Citations
Citations to this article as recorded by
Improvement of the Transient Levitation Response of a Magnetic Levitation System Using Hybrid Fuzzy and Artificial Neural Network Control Yupeng Zheng, Hyeong-Joon Ahn International Journal of Precision Engineering and Manufacturing.2025; 26(5): 1159. CrossRef
Magnetic levitation system (MLS) is a typical nonlinear system that controls the position of a steel ball with the magnetic force of the electromagnetic actuator. Since disturbances, due to various external forces and modeling errors, may cause excessive vibration or poor command following, disturbance suppression is necessary to improve the control performance of the MLS. This paper presents a control performance improvement approach of an MLS with a disturbance observer (DOB). First, a mathematical model of the MLS was introduced and validated with the measured frequency response. The MLS steel ball was levitated with a proportional–integral–derivative (PID) controller and a DOB was designed based on the physical model of the MLS. Both disturbance rejection and command tracking performances of the MLS with the DOB were investigated with several design parameters such as PID gains and Q filter. The disturbance rejection and command tracking performances were improved by 76.1% and 64.7%, respectively by using DOB. Finally, the disturbance rejection and command-following performances of the MLS with the DOB were verified experimentally. The effectiveness and limitations of DOB were explained with measured closed-loop frequency responses.
Citations
Citations to this article as recorded by
Control Boost of a Magnetic Levitation System with Disturbance Observers Yupeng Zheng, Hyeong-Joon Ahn Journal of the Korean Society for Precision Engineering.2024; 41(4): 273. CrossRef