Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Metal flow"

Article category

Keywords

Publication year

Authors

"Metal flow"

Articles
Prevention of Folding Defects in the Forging Process of Parachute Harness Parts Through Preform Die Design
Jeong Gon Kim, Sung Yun Lee, Jin Su Ha, Soo Bin Han, Seong Uk Kwon, Dae Cheol Ko, Jin Seok Jang
J. Korean Soc. Precis. Eng. 2025;42(2):129-138.
Published online February 1, 2025
DOI: https://doi.org/10.7736/JKSPE.024.115
This study focuses on preventing folding defects in the forging process of parachute harness parts. Through three- dimensional finite element analysis, it was determined that folding defects arise from uneven metal flow and timing differences in the filling of various regions. To address these issues, a preform die was designed and evaluated using multi-stage forging simulations. The results indicated that the preform die facilitated uniform metal flow, preventing folding defects and ensuring consistent filling across all key areas. To verify the simulation results, surface and cross-sectional metal flow analyses were conducted. Additionally, the preform die reduced the maximum die load, which is expected to extend die lifespan and improve overall process efficiency. These findings demonstrate that precise control of metal flow and the application of a preform die can significantly enhance the quality and durability of forged components, providing valuable insights for improving forging processes across various industries
  • 36 View
  • 2 Download
Forged Molding for Strength Improvement of Eccentric Head Bolts
Young Tae Cho
J. Korean Soc. Precis. Eng. 2023;40(3):197-202.
Published online March 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.152
In this study, the production process of eccentric head bolts that fasten flanges for water supply pipe connections, which can only be achieved through the cold forging process, was improved. For axial forging, forming analysis was performed for a 200-ton header machine to check the raw material specifications, forming load, and metal flow improvements suitable for forming. The analysis found that the forging of high-strength bolts of M14×65 ㎜ with eccentric heads was possible under the maximum load condition of 137.2 tons with low carbon boron steel of ø13.8×89.7 ㎜ and 105.2 g. By mounting the prototype mold on the header machine, it was possible to prevent metal flow breakage, as shown by the trial mass production test. It was possible to improve the strength of the eccentric head bolt and reduce the weight of the input material through the cutting process. Therefore, manufacturing costs could be reduced.
  • 33 View
  • 0 Download