Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Min-Woo Han"

Article category

Keywords

Publication year

Authors

"Min-Woo Han"

Articles
Design and Evaluation of Soft Actuators Including Stretchable Conductive Fibers
Hye Won Lee, Yeji Han, Minchae Kang, Ju-Hee Lee, Min-Woo Han
J. Korean Soc. Precis. Eng. 2022;39(4):307-313.
Published online April 1, 2022
DOI: https://doi.org/10.7736/JKSPE.021.113
In this study, soft actuators comprising conductive fibers, flexible polymers, and shape memory alloys, which can be used as textile products, are introduced. Conductive fibers play an important role because they can be used as sensors in wearable devices. The conductive fiber introduced in this study is a form that can be combined with a polymer, and it comprises a form wrapped around a flexible polymer. When an electric current is applied to the shape memory alloy embedded in the polymer, macroscopic deformation occurs due to phase transformation from the Martensite to the Austenite phase. Conductive fibers used in soft actuators are affected by resistive heat generated by the shape memory alloy and bending deformation of the actuator. Accordingly, changes in the conduction properties of conductive fibers were observed due to bending deformation and temperature changes. We also fabricated soft actuators with different types of polymers and observed the differences. The soft actuator presented in this study is a one-piece combination of a conductor and an actuator using a textile-type conductor, and it is likely to be used in smart clothing applications.
  • 4 View
  • 0 Download
Fabrication of Miniature High-Speed Actuator Capable of Biomimetic Flapping Motions
Min-Sik Kim, Sung-Hyuk Song, Min-Woo Han, Won-Shik Chu, Sung-Hoon Ahn
J. Korean Soc. Precis. Eng. 2017;34(9):597-602.
Published online September 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.9.597
Beyond conventional military products, technologies in the defense industry sectors around the globe are integrated and fused with newly emerging technologies such as three-dimensional printing (3DP) and smart material fabrication. Acknowledging these trends, this study proposes a miniature high-speed actuator whose fabrication process entails 3DP, smart materials, and shape memory alloy. The manufactured actuator is 25 mm long and 5 mm wide in and weighs 2.5 g, having the optimal frequency in the range of 35-40 Hz. Force and deformation measurement were also conducted, resulting in the lift force of 0.18 N per second with a bending deformation of 5 mm.

Citations

Citations to this article as recorded by  Crossref logo
  • Bidirectional rotational antagonistic shape memory alloy actuators for high-frequency artificial muscles
    Rawan Barakat, Susanne-Marie Kirsch, Felix Welsch, Paul Motzki
    Scientific Reports.2025;[Epub]     CrossRef
  • Design and Evaluation of Soft Actuators Including Stretchable Conductive Fibers
    Hye Won Lee, Yeji Han, Minchae Kang, Ju-Hee Lee, Min-Woo Han
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 307.     CrossRef
  • Review of Soft Actuator Materials
    Jaehwan Kim, Jung Woong Kim, Hyun Chan Kim, Lindong Zhai, Hyun-U Ko, Ruth M. Muthoka
    International Journal of Precision Engineering and Manufacturing.2019; 20(12): 2221.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Fabrication of Shell Actuator using Woven Type Smart Soft Composite
Min-Woo Han, Sung-Hyuk Song, Won-Shik Chu, Kyung-Tae Lee, Daniel Lee, Sung-Hoon Ahn
J. Korean Soc. Precis. Eng. 2013;30(1):39-46.
Published online January 1, 2013
Smart material such as SMA (Shape Memory Alloy) has been studied in various ways because it can perform continuous, flexible, and complex actuation in simple structure. Smart soft composite (SSC) was developed to achieve large deformation of smart material. In this paper, a shell actuator using woven type SSC was developed to enhance stiffness of the structure while keeping its deformation capacity. The fabricated actuator consisted of a flexible polymer and woven structure which contains SMA wires and glass fibers. The actuator showed various actuation motions by controlling a pattern of applied electricity because the SMA wires are embedded in the structure as fibers. To verify the actuation ability, we measured its maximum end-edge bending angle, twisting angle, and actuating force, which were 103°, 10°, and 0.15 N, respectively.
  • 3 View
  • 0 Download