With the development of various 3D printing technologies, many studies are being conducted in the field of food printing. In particular, chocolate printing is widely used for decoration. As a result, there is a growing demand for color printing, which goes beyond conventional monochrome chocolate 3D printing. Therefore, in this study, we tried to confirm the possibility of printing a new color gradation by mixing two types of chocolates with different colors using a static mixer. For this purpose, extrusion type printer equipment consisting of extrusion parts with dual syringe, heater, and mixer, and transport parts with motors and linear guide were manufactured. Proper process conditions were achieved by changing the chocolate temperature and extrusion quantity. Through this process, the color-mixed structure was successfully printed, and it was confirmed through color-code analysis that proper mixing was achieved. Further, through the production of multi-mixed color chocolate printing structures with various shapes, structural and visual diversity was acquired.
Citations
Citations to this article as recorded by
A Study on the Improving Extrusion Defects in FDM 3D Printers Jun-Seok Do Journal of the Korean Society of Manufacturing Process Engineers.2024; 23(4): 80. CrossRef
Study on the Reduction of Food Fabrication Time in Additive Manufacturing Process Using Dual Nozzle Seung Yeop Baik, Ju Ho Park, Sang In Kang, In Hwan Lee Journal of the Korean Society for Precision Engineering.2021; 38(11): 879. CrossRef
Since most commercialized DLP 3D printers fabricate 3D structures by sinking materials to Vat using a bottom-up method, it is difficult to use various materials simultaneously and there are many restrictions on printing composite materials. Especially, composite resin mixed with various functional powders in photo curable resin generally has high viscosity, causing difficult material flow in the bottom-up method when using Vat. Additionally, most of the previously presented methods for fabricating multi-material structure use individual curing for each material, so the adhesion force at the contact surface is less than 50% compared to single material. Thus, in this paper, we propose a new type of DLP 3D printer that combines Material Extrusion and the DLP system. The proposed equipment can supply high viscosity composite material resins to a specific area to cure various materials simultaneously. This method will enable fabrication of multiple composite material structures with sufficient adhesion force. The tensile test will be performed to verify suitability of the proposed method.
Citations
Citations to this article as recorded by
Evaluation of Bond Strength in Multi-Material Specimens Using a Consumer-Grade LCD 3D Printer Shunpei Shimizu, Masaya Inada, Tomoya Aoba, Haruka Tamagawa, Yuichiro Aoki, Masashi Sekine, Sumihisa Orita Journal of Manufacturing and Materials Processing.2025; 9(10): 332. CrossRef
Development of a Material Mixing Extrusion Type Chocolate 3D Printer MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim Journal of the Korean Society for Precision Engineering.2021; 38(2): 145. CrossRef
Dimensional Characteristics of 3D Printing by FDM and DLP Output Methods Myung-Hwi Jung, Jeong-Ri Kong, Hae-Ji Kim Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(1): 66. CrossRef
Property Analysis of Photo-Polymerization-Type 3D-Printed Structures Based on Multi-Composite Materials So-Ree Hwang, Min-Soo Park Applied Sciences.2021; 11(18): 8545. CrossRef
The necessity for printing multi-materials has increased as the importance of 3D printing grew in various industries. Many studies have undertaken for printing multi-materials simultaneously. In ME (Material Extrusion) type 3D printers, the method of printing different materials using multi nozzles is generally commercialized. Polymers with different composition are hardto-mix with each other, making it difficult to maintain the structural strength of printer parts. So the MJ type 3D printer uses a unique method that mixes multi-materials in a liquid state before printing. In the ME type 3D printer, there were also efforts to mix materials in a melted state, but they were mainly demonstrated for multi-colored parts. In this study, the effect of multi-material mixing on structural strength changes was tested. Multi-Materials were printed with the ME type 3D printer by using one nozzle with a multiple filament feeding system. The bending and tensile tests were conducted to verify the structural characteristics.
Citations
Citations to this article as recorded by
Optimization Design of Student KSAE BAJA Knuckle Using SLM 3D Printer Young Woo Im, Geon Taek Kim, Hyeon Sang Shin, Kang Min Kim, Bu Hyun Shin, Jong Won Lee, Jinsung Rho Journal of the Korean Society for Precision Engineering.2023; 40(9): 719. CrossRef
Analysis of Correlation between FDM Additive and Finishing Process Conditions in FDM Additive-Finishing Integrated Process for the Improved Surface Quality of FDM Prints Ji Won Yu, Hyung Jin Jeong, Jae Hyung Park, Dong Hun Lee Journal of the Korean Society for Precision Engineering.2022; 39(2): 159. CrossRef
Study on the Reduction of Food Fabrication Time in Additive Manufacturing Process Using Dual Nozzle Seung Yeop Baik, Ju Ho Park, Sang In Kang, In Hwan Lee Journal of the Korean Society for Precision Engineering.2021; 38(11): 879. CrossRef
Property Analysis of Photo-Polymerization-Type 3D-Printed Structures Based on Multi-Composite Materials So-Ree Hwang, Min-Soo Park Applied Sciences.2021; 11(18): 8545. CrossRef
Development of a Material Mixing Extrusion Type Chocolate 3D Printer MinSoo Park, HyungJik Jeong, JaeHyuek Moon, JungMuk Lim Journal of the Korean Society for Precision Engineering.2021; 38(2): 145. CrossRef
Finishing is the final process in molds manufacturing and consumes much process time. Also, it influences on surface quality of molds. But, there are few systematic methods to control the process. In this work, basic experiments were carried out to study the machining characteristics of the finishing tools. From the experiments, critical surface roughness and wear coefficient are suggested to reduce the number of finishing steps and to plan a systematic finishing procedure. Comparison experiments were carried out between the expert's method and the new method, which is based on the results of this research. From the experiments, it is verified that the systematic method takes less time and generates less form error in the machined surface than the worker's method.