Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Mincheol Kim"

Article category

Keywords

Publication year

Authors

"Mincheol Kim"

Articles
Quantitative Analysis of Brittle Fracture for Evaluating Optical Properties in Zinc Sulfide Materials
Woo-Jong Yeo, Hwan-Jin Choi, Minwoo Jeon, Mincheol Kim, Jong Kim, Geon-Hee Kim, Wonkyun Lee
J. Korean Soc. Precis. Eng. 2024;41(2):95-100.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.117
Zinc sulfide (ZnS) is a widely used material in far-infrared and near-infrared imaging systems due to its exceptional optical transmittance properties. Through a hot isostatic compression process, during manufacturing, ZnS undergoes crystal structure modifications, resulting in increased transmittance across the visible and infrared spectra. However, ZnS exhibits low fracture toughness and irregular crystal orientations, making it prone to brittle fracture during the conventional cutting processes. Such brittleness often leads to surface defects that scatter light, diminishing optical transmittance. Therefore, understanding the conditions conducive to ductile processing is critical and necessitates a thorough brittle fracture analysis. This study introduces a novel quantitative analysis method to determine the occurrence of ductile processing and brittle fracture in ZnS materials after the turning process. To validate the efficacy of this approach, experimental machining was conducted through diamond turning and magnetorheological fluid polishing processes. Subsequently, a comprehensive quantitative assessment of brittle fracture was performed. Additionally, the relationship between brittle fracture and optical transmittance was explored using the proposed analysis method.
  • 5 View
  • 0 Download
Quantitative Analysis of Effect of Shrink Fit in Cold Forging
QiuShi Li, MinCheol Kim, DongChan Jung, YoHun Son, ManSoo Joun
J. Korean Soc. Precis. Eng. 2011;28(3):301-307.
Published online March 1, 2011
In this paper, effects of major design parameters of cold forging dies on die mechanics are quantitatively investigated with emphasis on shrink fit using a thermoelastic finite element method. A ball-stud cold forging process found in a cold forging company is selected as a test process and the effects of die insert material, magnitude of shrink fit, dimension of shrink ring, number of shrink rings, partition of die insert and clamping force on effective stress and circumferential stress are analyzed. It has shown that the number of shrink rings, magnitude of shrink fit, and Young’s modulus of die insert material have strong influence on compressive circumferential stress in die insert but that the influence of the other design parameters is relatively weak.
  • 2 View
  • 0 Download