As advanced driver-assistance systems become more common in commercial vehicles, there is a growing need for evaluating safety of vehicles. Low platform target robot systems play a crucial role in this evaluation process as they can assess safety performances of autonomous vehicles. Driving stability of a target robot during real vehicle tests depends significantly on its suspension system. Therefore, developing an appropriate suspension device for the target robot is of utmost importance. This study aimed to improve driving stability by comparing two different suspension configurations: a single rocker and a double rocker, both incorporating a crank rocker mechanism. Initially, a two-dimensional model that met constraints of the suspension device was developed, followed by an analysis of reaction forces. Subsequently, an optimal design was determined using design of experiments principles based on parameters of a 2D model. The manufactured suspension system model based on the optimal design underwent multi-body dynamics simulation to evaluate driving stability. Comparative analysis of driving stability for both configurations was performed using MBD simulation, offering insights into the superior suspension design for the target robot.
The current production speeds of current paper-cup-forming machines need to be improved to match the increasing demands of the market. However, high-speed operations may cause severe vibrations, which are detrimental to the machine. In this study, a 3D dynamic simulation model was developed to predict changes in the dynamic characteristics of the machine following increased operation speed, using the Recurdyn and Nx Nastran software. Accuracy of the simulation model was validated by comparing simulation results and experimental measurements of the machine vibration. A new upper plate design was also developed, to minimize vertical deflection and vibration due to increased operating speed. Our simulation model showed that new upper plate design reduced the magnitude of maximum deflection by 72% and maximum vibration by 38%, suggesting that a modified upper plate would be dynamically stable in high-speed operations.