The purpose of the study was to evaluate the lumbar mobility and flexibility by the vertical vibration stimulation. The subjects were 21 young adults were divided into vibration group (n = 7) that applied 30 Hz vibration stimulation to the lumbar, foam roller group (n = 7) that relaxes the lumbar muscles with a foam roller, and good morning exercise group (n = 7) that stimulates the lumbar spine with the good morning exercise. The muscle strength, EMG and the sit & reach test were measured, to evaluate the lumbar mobility and flexibility before and after exercise intervention in each group. Results showed increasing in the vibrating group in muscle strength and EMG, and the good morning group and the vibrating group in the Sit & Reach test. This can be developed as a new alternative to exercise therapy for spine rehabilitation.
The purpose of this study was to develop and verify the smart insole based FSR sensor for measurement and improvement of the muscle strength imbalance. We recruited 15 subjects with muscle strength difference over 20% and 15 subjects with muscle strength balance below 10%. We developed the human body load insole and integrated modules using FSR sensor. Subjects walked for 5 minutes at a slope of 0% and a speed of 3 km / h on a treadmill with a smart insole. We measured the real-time muscle activity and foot pressure according to the muscle strength imbalance during gait. FSR data of the developed smart insole showed that the insole had similar accuracy and efficacy as muscle activity and foot pressure. This is the interval in which the muscle imbalance shifts from the stance phase to the load reaction, and the weight support is the largest, and the center of gravity of the human body passes over the whole foot, which is considered to cause the greatest imbalance. This suggests that there is a direct or indirect correlation between muscle strength imbalance of the lower limb and the imbalance of the body weight distribution during gait.
Citations
Citations to this article as recorded by
Design and manufacturing of a smart insole Seung Joo Lee, Chae Young Park, In Hwan Lee Sensors and Actuators A: Physical.2026; 397: 117225. CrossRef
Functional evaluation of air insoles and methodology for determining the optimal thickness according to weight group Seungnam Min, Murali Subramaniyam, Heeran Lee International Journal of Industrial Ergonomics.2024; 101: 103582. CrossRef
Development of Plantar Pressure Distribution Measurement Shoe Insole with Built-in Printed Curved Sensor Structure Seung Yoon Jung, Chaima Fekiri, Ho-Chan Kim, In Hwan Lee International Journal of Precision Engineering and Manufacturing.2022; 23(5): 565. CrossRef
STUDY ON VISION-BASED MULTIDIRECTIONAL POSTURE AND MOTION ANALYSIS SYSTEM DEVELOPMENT WOO SUK CHONG, MI YEON SHIN, CHANG HO YU Journal of Mechanics in Medicine and Biology.2019; 19(08): 1940059. CrossRef