In this study, we fabricated thin film solid oxide fuel cells on nanoporous anodic aluminum oxide (AAO) substrate for low-temperature operation using the all-through sputtering method. To deposit up to a three-micrometer thick anode with both porosity and electrical conductivity, we used the glancing angle deposition and co-sputtering methods. For the anode materials, we used nickel gadolinium-doped-ceria (Ni-GDC) mixed ionic and electronic conductor (MIEC), which improved hydrogen oxidation reaction reactivity at the anode side. TF-SOFCs were successfully operated at 500℃, and 223.6 mW/cm² was their highest measured maximum power density. We conducted structural and electrochemical analyses to figure out cells’ unique resistant characteristics; ohmic resistance through the anode thin film and polarization resistance of reaction area near the narrowed anode pores. We found how the anode thin film thickness affects the current collecting performance and the anode reactivity, and their effects were qualitatively and quantitatively compared.
Recently, new perovskite cathode material, SrCo0.8Nb0.1Ta0.1O3-δ (SCNT) was reported, showing high oxygen reduction reaction (ORR) activity. This study demonstrates thin film deposition of SCNT by pulsed laser deposition technique applied to anodic aluminum oxide (AAO) based thin-film solid oxide fuel cells (TF-SOFCs) to assess the possibility of SCNT application to TF-SOFCs. The SCNT powder and the target were prepared by the solid state reactive sintering method (SSRS). This target was then mounted to the pulsed laser depositing machine and deposited on the Si wafer, and the nano-porous substrate, AAO. The physical structure and the chemical phase were investigated by the field emission scanning electron microscope, focused ion beam scanning electron microscope, and X-ray diffraction. On the top of the AAO, thin Pt film and yttria stabilized zirconia (YSZ) were first deposited by sputtering and the SCNT was deposited on the top of it afterward. The open circuit voltage of AAO cell was tested at 500°C, and successful polarization activity of SCNT was observed.