Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Nanofiber"

Article category

Keywords

Publication year

Authors

"Nanofiber"

Articles
Fabrication of Electrospun Nanofibers with Direct-write Sprayed Conductive Patterns
Jeong Hwa Kim, Semih Akin, Yujin Lee, Martin B.-G. Jun, Yong Jun Yoon, Young Hun Jeong
J. Korean Soc. Precis. Eng. 2024;41(4):287-293.
Published online April 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.148
The demand for flexible electronic materials used in wearable devices has experienced a significant surge in recent years. Wearable devices typically incorporate an electronic material or system that can be mounted on a human body. It is imperative that these materials are composed of substances compatible with the human body. Consequently, numerous studies have been undertaken to develop flexible electronic devices with various performance capabilities. In this study, nanowire patterns were manufactured on nanofibers and utilized as patches. To create a nanowire pattern, a direct-write spraying process was employed to investigate changes in electrical characteristics using process variables. The process involved depositing silver nanowires on the surface of nanofibers using a pneumatic spray nozzle. Generated patterns were found to be suitable for use as sensors capable of withstanding skin-attached deformation.
  • 5 View
  • 0 Download
Flexible Sensor on the Basis of Aligned Piezoelectric Nanofibers for Measurement of Small Deformations and its Application to Pulse Monitoring
Han Bit Lee, Young Won Kim, Jeanho Park, Jonghun Yoon, Suk-Hee Park
J. Korean Soc. Precis. Eng. 2020;37(2):125-131.
Published online February 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.137
Recently, applying nanoscale functional materials, there have been great advances in the flexible sensor system, which provides a large number of applications for soft electronics, such as skin-attachable sensors, artificial electronic skins, and soft robotic systems. Here, we developed a highly sensitive and flexible device on the basis of polymeric piezoelectric nanofibers and elastomeric packing structures. To produce the nanofibers, we applied the electrospinning process with a representative piezoelectric co-polymer, poly (vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE). Unlike the conventional electrospinning, we applied an anisotropic fiber collection system, which could obtain uniaxially aligned nanofiber array. The aligned nanofibers were sandwich-packed with bridge-shaped PDMS substrates, thereby integrating the flexible piezoelectric sensor. As an external force made a deflection of the bridge in the sensor, the embedded nanofibers generated piezoelectricity in a longitudinal direction of the fibers. The piezoelectric sensor generated good discernable outputs versus the varied mechanical input deflection from tens of micrometers to the sub-micrometer. With this great sensing ability, we could monitor heart pulse signals on the wrist skin by measuring tiny deflections generated from the expansion of the radial artery underneath the skin. Our study suggests a potential application of flexible sensor in the field of wearable health-monitoring medical systems.
  • 5 View
  • 0 Download