Condensation is an important research topic that ensures increased energy efficiency. Our researchers aimed to optimize heat transfer in industrial heat exchanger tubes through surface modification. We first succeeded in fabricating superhydrophilic and superhydrophobic tubes using surface modification. We observed the condensation phenomenon on the outside of the tube and evaluated the heat transfer performance through a condensation experimental facility. As a result, we found that the condensation heat transfer efficiency of superhydrophobic tubes is superior to that of conventional tubes. However, the heat transfer efficiency of the superhydrophobic tube reduced with an increase in saturation. To improve performance degradation, superhydrophilic and superhydrophobic hybrid tubes were fabricated and evaluated for their potential to improve heat transfer efficiency. As a result, we found that the liquid film generated by filmwise condensation on the superhydrophilic surface swept past the residual droplets generated by dropwise condensation on the superhydrophobic surface, resulting in the best heat transfer performance. Our results break the stereotypes of previous studies and provide a new paradigm for achieving optimal heat transfer performance on large-area curved surfaces. This research is expected to be widely applied in a variety of industries where energy efficiency is critical.
MXene is one of the most fascinating 2D materials owing to its great electrical properties and unique performance. Among various application areas, the performance of organic material adsorption has been highlighted with the growing interest in the biocompatible applications of MXene. Although previous research revealed that the huge surface area of this 2D nanomaterial could lead to superior organic material adsorption performance, surface functional groups were usually controlled by changing the pH, and the MXene was generally produced by HF etchant. In this study, a surface modification method of Ti₃C₂Tx MXene film was proposed to enhance organic material adsorption by irradiating the pulsed plasma electron beam (EB). Methylene blue (MB)-dispersed DI water was prepared, and pristine MXene was prepared at pH 7. The MB concentration was only reduced by 20% by pristine MXene. However, EB-treated MXene adsorbed about 75% of the MB within 20 min and over 90% within 80 min when the MXene film was ground to powder form. The results showed that the increased surface area and formation of hydrophilic functional groups successfully modified MB adsorption following EB irradiation under optimal processing conditions.