As advanced driver-assistance systems become more common in commercial vehicles, there is a growing need for evaluating safety of vehicles. Low platform target robot systems play a crucial role in this evaluation process as they can assess safety performances of autonomous vehicles. Driving stability of a target robot during real vehicle tests depends significantly on its suspension system. Therefore, developing an appropriate suspension device for the target robot is of utmost importance. This study aimed to improve driving stability by comparing two different suspension configurations: a single rocker and a double rocker, both incorporating a crank rocker mechanism. Initially, a two-dimensional model that met constraints of the suspension device was developed, followed by an analysis of reaction forces. Subsequently, an optimal design was determined using design of experiments principles based on parameters of a 2D model. The manufactured suspension system model based on the optimal design underwent multi-body dynamics simulation to evaluate driving stability. Comparative analysis of driving stability for both configurations was performed using MBD simulation, offering insights into the superior suspension design for the target robot.
In recent years, the machine industry has demanded high precision of the processed products and high efficiency of production due to the rapid development of technology. The grinding machine is being studied in many countries. The typical grinding machine is processed in the order of one side each. However, a 2-head simultaneous grinding machine processes both sides at the same time. Therefore, it has reduced processing time and improved precision. In this study, the overall structural analysis of a 2-head simultaneous grinding machine with high precision and high efficiency of productivity was performed. For high precision of the 2-head simultaneous grinding machine, the spindle taper angle was analyzed and optimized. When the spindle taper angle was 16 degrees, it had the highest chucking force. Therefore, the spindle had high precision as the spindle taper had the strongest force to chuck the collet. The analysis results can be applied to further develop the 2-head simultaneous grinding machine.
Citations
Citations to this article as recorded by
Research on Stiffness Analysis and Technology of the Heavy Spidle Top Yongkang Wang, Bingwei Gao, Wenlong Han, Shilong Xue Current Materials Science.2024; 17(5): 540. CrossRef
Major aerospace developers continue to push for new structural composite applications to reduce the environmental impact of greenhouse gas emissions, improve both aircraft performance and costs. In this study, the parts that carry the load in the regions where mechanical joints are applied, require whole processing to tighten and identify stress concentration points. In addition, failure modes caused by bearing and by-pass loads were set as the main design factors. Optimum sizing was performed through the application of factors taken into account in the buckling failure mode and production using the preliminary design analysis model of the composite wing structure. In the area where the fuselage is joined with the fuselage, bearing and bypass load were considered important design factors.
The production method of round wire used in conventional high-grade fabric production requires an additional step of cutting the side portion after cold rolling. However, after the additional cutting process, the performance of the round side portion was not improved. To solve these problems, the shape of the side portion is improved by replacing the process of wire cutting by the shape rolling. The rolling is done six times in total, and four flat rolling and two shape rolling are performed. There are three types of shape rolling: square, box and oval. The total number of cases of rolling analysis was analyzed nine times according to the kind of 3,5th shape rolling. Efficient shape rolling was selected by comparing deformation of wire thickness and width after final rolling, residual stress of the wire and the shape of the side part. The above study was conducted through LS-DYNA, a simulation program that can analyze material behavior of materials.
Recently, a high-precision ball screw is an essential part of high-speed machines. However, producing high-precision ball screws has been costly and time-consuming. Nowadays, a whirling machine is used to produce high-precision ball screws efficiently. Rotating multi-tips are used to turn the ball screw in the whirling machine. In this study, a structural analysis was performed by a finite-element method to develop a whirling machine. An improved model of the whirling machine was proposed by the analysis. In addition, a thermal analysis was performed to confirm the thermal stability. The results of the analysis can be applied in order to further develop the whirling machine.
Citations
Citations to this article as recorded by
Heat Generation Characteristics of Whirling Spindle for Ball Screw Machining Hong-Man Moon, Sang-Won Kim, Ho-In Jeong, Choon-Man Lee Journal of the Korean Society of Manufacturing Process Engineers.2020; 19(10): 44. CrossRef