Parallel robots exhibit superior precision to serial robots. They operate with reduced power consumption due to load distribution among individual motors. However, symmetrical parallel robots employing a 1T2R structure encounter challenges with parasitic movements at the end-effector, leading to control complexities and application limitations. This study aimed to downsize the robot while ensuring its operational range by employing origami techniques. Addressing the inherent weakness of origami’s stiffness, various methods of material stacking and designed joints with diverse materials and thicknesses were proposed to meet specific angle requirements for each component. The developed control model was validated through simulations and experiments, effectively minimizing parasitic movements by verifying the robot"s motion.