Owing to recent advances in additive manufacturing technology, design for additive manufacturing (DfAM) has been used to overcome design limitations due to constraints in traditional manufacturing processes. In this study, we applied DfAM technology to design lightweight and consolidated vacuum grippers for inspection equipment. We proposed a consolidated design to reduce manufacturing time and costs, which previously encompassed assembling eleven components. Topology optimization was used to reduce part weight while maintaining structural rigidity and safety, and two optimization models were designed: two-piece and one-piece models. Based on these optimized geometries, the internal vacuum paths were designed in a curved shape to enhance adsorption characteristics. Numerical simulations were conducted to evaluate the structural performance and flow characteristics of the initial design and the two optimization models. The pressure drop of the one-piece model, which was the best design, was reduced to 1/8 of the initial design and the structural safety factor was predicted to be 6.37. This final design was then additively manufactured by a digital light processing type 3D printer and the weight of the resulting parts was reduced from 12.94 to 2.08 g. Experimental observation found that the additively manufactured vacuum gripper showed enhanced absorption performance compared to the initial design.
Citations
Citations to this article as recorded by
A Study on Improvement of Flow Characteristics of TPMS Heat Exchanger based on Mathematical Filtering Seo-Hyeon Oh, Jeong Eun Kim, Ji Seong Yun, Do Ryun Kim, Jungwoo Kim, Chang Yong Park, Keun Park Journal of the Korean Society for Precision Engineering.2024; 41(7): 541. CrossRef
A Study on Injection Mold Design Using Topology Optimization Mi-Jin Kim, Jae-Hyuk Choi, Gyeng-Yun Baek Journal of the Korean Society of Manufacturing Process Engineers.2022; 21(4): 100. CrossRef
The purpose of this study was to design a sledge frame for para ice hockey in which an athlete sits and plays on a sledge. A sledge comprises a bucket, a blade carrier, and a frame. A sledge frame is usually fabricated by welding a number of pipes, and thus its structural safety is degenerated at the welded joints. In this study, the sledge frame was redesigned using the principle of DfAM (Design for Additive Manufacturing), to reduce the frame weight as well as to have sufficient structural safety. As an application of DfAM, the part consolidation was performed for six joints from which the number of welding spots was reduced to 56% (From 16 to 9). Among the resulting four consolidated joints, topology optimization was performed for three joints to reduce their weight while maintaining higher structural stiffness and safety. As a result, the structural stiffness and safety of the joints improved remarkably, and the resulting frame weight was reduced by 20% (From 1.66 to 1.34 kg). This weight reduction with structural enhancement is expected to improve athletes’ performance and safety in para ice hockey games.
Citations
Citations to this article as recorded by
A Study on Improvement of Flow Characteristics of TPMS Heat Exchanger based on Mathematical Filtering Seo-Hyeon Oh, Jeong Eun Kim, Ji Seong Yun, Do Ryun Kim, Jungwoo Kim, Chang Yong Park, Keun Park Journal of the Korean Society for Precision Engineering.2024; 41(7): 541. CrossRef
Additive Manufacturing of a Release Agent Injection Manifold for Hot Forging Hak-Sung Lee, Min-Kyo Jung, Eun-ah Kim, Soonho Won, Do Wock Chun, Taeho Ha Journal of the Korean Society for Precision Engineering.2021; 38(9): 675. CrossRef
Analysis on the Warm Bending Process of Magnesium Alloy Sheet Using Additively Manufactured Polymer Die-Set Hyung-Won Youn, Jun-Hyun Kyeong, Keun Park, Chang-Whan Lee Journal of the Korean Society for Precision Engineering.2021; 38(10): 775. CrossRef
Lightweight Design of a Vacuum Gripper for Inspection Equipment Using Topology Optimization Euddeum Cha, Tae-Young Kim, Taeho Ha, Keun Park Journal of the Korean Society for Precision Engineering.2021; 38(9): 683. CrossRef