Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Pinhole"

Article category

Keywords

Publication year

Authors

"Pinhole"

Articles
Pinhole Detection in Thin Film Solid Oxide Electrolytes Using Selective Adsorption of Ag Nanoparticles via a Spark Discharge Generator
Doyoon Kim, Ikwhang Chang, Jong Dae Baek
J. Korean Soc. Precis. Eng. 2025;42(6):441-446.
Published online June 1, 2025
DOI: https://doi.org/10.7736/JKSPE.025.024
Pinhole-free ionic conductors are critical to achieve optimal performance in thin film-solid oxide fuel cells (TF-SOFCs). However, nanoscale defects, especially pinholes, can induce current leakage and contribute to cell failure by creating electrical short circuits. This study introduced a novel methodology for detecting pinholes in yttria-stabilized zirconia (YSZ) thin-film solid oxide electrolytes. The approach utilized selective adsorption of silver (Ag) nanoparticles generated via a spark discharge generator (SDG). Analytical techniques, including focused ion beam (FIB), scanning electron microscopy (SEM), and transmission electron microscopy (TEM), were employed to investigate interactions between Ag nanoparticles and nanoscale defects. Results showed that nanoparticle-based diagnostic methods were efficacious for defect characterization, offering a solution for enhancing the quality of thin-film electrolytes.
  • 5 View
  • 0 Download
A Study on the Load Sharing among Planet Gears according to the Phase of Carrier Pinhole Position Error in the Planetary Gearbox
Jeong Gil Kim, Young-Jun Park, Geun Ho Lee, Joo Young Oh, Young Joo Kim
J. Korean Soc. Precis. Eng. 2017;34(6):377-382.
Published online June 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.6.377
The planetary geartrain can be reduced in size and weight, and has excellent durability since the input torque is divided by the number of planet gears when the power is transmitted. In order to improve its durability, the load sharing among planet gears must be even. However, of the various manufacturing errors possible, the carrier pinhole position error has the greatest influence on load sharing. This study compared and analyzed the load sharing and the gear safety of planetary gears, according to the phase of the carrier pinhole position error. We confirmed that load sharing among the planet gears varied, depending on the phase of the carrier pinhole position error. The mesh load factor is inversely related to the gear safety factor for bending and contact, and affects the durability of the planetary geartrain. Also, in the design of the planetary geartrain, the load sharing among planet gears is directly affected by the carrier pinhole position error and its phase. Therefore, the geometric tolerance must be managed efficiently, which needs to be reflected in the production drawings.

Citations

Citations to this article as recorded by  Crossref logo
  • Analytical study of floating effects on load sharing characteristics of planetary gearbox for off-road vehicle
    Woo-Jin Chung, Joo-Seon Oh, Hyun-Woo Han, Ji-Tae Kim, Young-Jun Park
    Advances in Mechanical Engineering.2020;[Epub]     CrossRef
  • A Review of Recent Advances in Design Optimization of Gearbox
    Zhen Qin, Yu-Ting Wu, Sung-Ki Lyu
    International Journal of Precision Engineering and Manufacturing.2018; 19(11): 1753.     CrossRef
  • 6 View
  • 0 Download
  • Crossref