Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Plastic deformation"

Article category

Keywords

Publication year

Authors

"Plastic deformation"

Articles
Study on of Friction and Degradation Characteristics of TPV Glass Run Channel
Su-Bin Cha, Junho Bae, Koo-Hyun Chung
J. Korean Soc. Precis. Eng. 2023;40(11):891-897.
Published online November 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.078
Recently, the demand for electric vehicles is intensively increasing in accordance with environmental issues in automotive industries. Given that noise level from the electric vehicles is significantly lower than that from conventional vehicles with internal combustion engine, noise management has become more critical. Conventionally, glass run channel (GRC) is used to block the noise and contaminants from outside of vehicle. In this work, the friction and degradation characteristics of GRC with thermoplastic vulcanizate substrate were assessed. The tests were performed using the reciprocating tribo-tester developed to replicate the contact sliding between GRC and window glass. Also, the test conditions were determined in consideration of operating condition of GRC. As a result, the plastic deformation of the lips due to creep and wear of the slip coating deposited on the lip surface were found to be major degradation mechanisms. Furthermore, it was shown that the friction and degradation increased significantly due to the misalignment between GRC and window glass, associated with the significant increase in the reaction force. The results of this work provide fundamental understanding of the degradation characteristics of GRC, and therefore are expected to be useful for the design of GRC with improved performance.
  • 6 View
  • 0 Download
Analysis of Acoustic Emission (AE) Signal Characteristics of the Magnesium Alloy Sheet (AZ31B) in the Tensile Deformation
Yong Ho Song, So Chan An, Jae Hyeong Yu, Wan-Jin Chung, Chang-Whan Lee
J. Korean Soc. Precis. Eng. 2023;40(1):39-47.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.091
In this study, acoustic emission (AE) signals associated with the behavior of materials in the magnesium alloy (Mg AZ31B) tensile test were analyzed. The AE sensor was attached with the material to measure the AE signals. During the tensile experiment, the AE sensor measured the elastic waves generated inside the specimen. The AE parameters, such as, the signal energy, duration, and frequency centroid, were studied. We also analyzed the effect of the materials size and tensile speed on the AE signals. As a result, the lowest frequency centroid value occurred at the yield and fracture points. As the width and length of the specimen increased, the number of hit counts increased and the peak frequency occurred. Other AE parameters, such as, the duration and frequency centroid, were not affected. As the tensile speed increased, the hit decreased and the frequency centroid decreased in the elastic region. It was found that in the detection of the yield and fracture deformation, the number of counts, and frequency centroid were appropriate.
  • 5 View
  • 0 Download
A Study on the Plastic Deformation by Collision of a Safety Coupling under Overload
Hyeon Jun Jung, Taek Jin Jang, Byung Ro Kim, Sungmuk Kim, Jong-Bong Kim
J. Korean Soc. Precis. Eng. 2021;38(3):187-193.
Published online March 1, 2021
DOI: https://doi.org/10.7736/JKSPE.020.101
Plastic deformation of balls in safety coupling by collision with V-Hole was investigated in the current study. Generally, when the applied torque is greater than the maximum allowable torque, balls in V-Hole get out from the holes and the coupling loses the torque transfer capability. After balls are out from the V-Holes, the balls and V-Hole rotate at a different velocity. When balls meet the next V-Hole, they collide into the wall of the V-Hole. Due to this collision, plastic deformation and wear take place. The plastic deformation and wear may reduce the torque transfer capability of the safety coupling. The reduction in torque transfer capability was observed in the experiment. In this study, plastic deformation of balls and flange was investigated through dynamic analysis of the safety coupling. Also, the effect of relative rotational velocity on the plastic deformation was investigated.
  • 5 View
  • 0 Download