When wind load acts on the Power Transmission Line (PTL) with asymmetric cross section from icing and snowing, the generated vibration is termed ‘galloping phenomenon’. Since galloping phenomenon triggers short circuits or ground faults of the PTL, various galloping studies are being conducted, at home and abroad. However, galloping analysis is performed for single span in most cases, while actual PTL comprises multiple spans. In this study, PTL is modeled as a mass-springdamper system, using a multi-body dynamics analysis program, RecurDyn. To analyze dynamic analysis of the PTL, damping coefficient is derived, by using the free vibration experiment of the PTL and Rayleigh damping theory. Through flow analysis, the galloping occurrence condition was identified, and galloping simulation was performed, by modeling the wind load. The effect of galloping on the stress applied to the pylon, was analyzed by flexible modeling the pylon between spans. As a result, approximately 150% of stress is applied to the pylon, so the galloping phenomenon should be considered when designing the pylon.
Citations
Citations to this article as recorded by
A Study on Structural Analysis and Design Criteria Improvement for Enhancing Stability of 154kV Transmission Towers in Extreme Environment Hyunui Park, Songhee You, Youngsung Kwon Journal of Korean Society of Steel Construction.2024; 36(5): 253. CrossRef
Gears are rotating mechanical parts with excellent power transmission efficiency and are widely used in machine tools, automobile, industrial machinery, and aviation industries. To enhance the performance of the gear, optimized design of the gear geometry is paramount. In this paper, we optimize the geometric tooth profile of helical gears which are among the gears of the transfer case gearbox by using the finite element program, Romax Designer to model and analyze the load and gear teeth of the gearbox power transmission system. The optimized gears were fabricated and compared to the results of the gear tests.
Citations
Citations to this article as recorded by
Study on the Modification of the Contact Pattern and Teeth Shape of Tapping Device Drive Gears Sung-Min Moon, Yong-Woo Park, Do-Young Lee, Sung-Ki Lyu Journal of the Korean Society of Manufacturing Process Engineers.2025; 24(9): 76. CrossRef
The gear ratio variable topology of a magnetic gear with an integrated harmonic modulator is analyzed using a magnetic permeance model. A dynamic characteristic equation is derived in consideration of the gear ratio between each layer constituting the magnetic gear: the driving side, the driven side, and the control side layer. Based on derived transfer function, the frequency characteristic between driving torque and angular speed of the driving side is analyzed. Theoretic model is compared with an experimental test result using the in-house dynamometer. In the general magnetic gears, the gear ratio is variable so that speed between each layer decelerates with gear ratio, but transmission torque is constant regardless of gear ratio. In this study, these characteristics are also verified through theoretical methods and experimental results, respectively.
Citations
Citations to this article as recorded by
Torque Handling of a Magnetic Gear with a Variable Gear Ratio by Superposition of Multi-phase Currents Kwang Suk Jung Journal of the Korean Society of Manufacturing Technology Engineers.2019; 28(6): 446. CrossRef