Solid Oxide Fuel Cells (SOFCs) are energy conversion devices known for their significantly higher power density compared to other fuel cell types. However, their high operating temperatures pose challenges related to thermal stability. To address this, research is focusing on Low-Temperature SOFCs (LT-SOFCs), which function at lower temperatures and exhibit enhanced electrochemical performance. While various electrode materials are utilized in SOFCs, platinum (Pt) stands out for its excellent electronic conductivity and catalytic activity. Unfortunately, at the operating temperatures of SOFCs, Pt tends to agglomerate, leading to a rapid reduction in the triple phase boundary (TPB) and a subsequent decline in electrochemical reactions. In this study, LT-SOFCs were fabricated with a Praseodymium Oxide (PrOx) capping layer applied to a porous Pt cathode using sputtering, with various thicknesses achieved by adjusting the deposition time. The electrochemical performance of the LT-SOFCs was measured at 500oC. Additionally, the degradation behavior of the LT-SOFCs was assessed by applying a constant voltage of 0.5 V for 48 hours. Scanning Electron Microscopy (SEM) analysis was also conducted on the PrOx capping layer thin films under the same operating conditions.