Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"Precision machining"

Article category

Keywords

Publication year

Authors

"Precision machining"

Articles
A Study on Pattern Machining Technology for Germanium Materials Using Grooving Machining Process
Joong Kyu Ham, Jong Gyun Kang, Hwan Ho Maeng, Seong Hyeon Park, Jin Yong Heo, Young Durk Park, Geon Hee Kim
J. Korean Soc. Precis. Eng. 2024;41(2):111-116.
Published online February 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.130
In the optical systems field, key components such as spectroscopic elements often require the use of optical materials with high-refractive indices to achieve miniaturization and lightweight characteristics. However, high-refractive index optical materials have low machinability due to their brittle characteristic. In this study, we investigated the changes in surface characteristics during precision pattern machining of high-refractive index materials; specifically, a low fracture toughness, for use in grating spectroscopic elements. The experiment involved diamond turning for the primary machining, and for the secondary pattern machining, the tool rake angle, tool feed rate, and depth of cut were set as variable conditions. Surface roughness measurements and surface quality analyses were carried out using a white-light interferometer and tool microscopy. The results provide insights into the influence of conditions on the surface properties during the machining of high-refractive index materials for grating spectroscopic components. Under the machining conditions with a tool rake angle of -65o, tool feed rate of 5,000 mm/min, and a depth of cut 10 nm, the surface roughness of Ra 8.0 nm was achieved. Based on these findings, we plan to conduct further research on the mechanical fabrication of the blaze angle for grating spectroscopic components.
  • 5 View
  • 0 Download
Machinability Improvements of Soda-lime Glass Using Various Surface Coatings
Ji Hwan Kim, Byoung Ho Yun, Suk Bum Kwon, Sangkee Min, Hae-Sung Yoon
J. Korean Soc. Precis. Eng. 2023;40(10):839-845.
Published online October 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.048
Advanced engineering ceramics have been highlighted mainly owing to their superior hardness, corrosion/wear resistance, and thermal insulation performances. However, they are usually very difficult-to-cut because of their high brittleness. In light of this, ultra-precision machining has been studied to perform ductile-regime cutting in the machining of ceramics. Ductile-regime cutting can feature a smoother surface, and lower subsurface damage as the dominant material response during cutting showed ductile behavior. Researchers have investigated promoting ductileregime cutting to improve the machinability of ceramics. In this study, various coating materials were applied to the workpiece surface, and their effects on machinability improvements were explored. A total of 6 surface coatings and lubricants were applied to soda-lime glass. The critical depth of cut (CDC), the depth where the ductile-brittle transition (DBT) occurred, was increased in all coatings and lubricants, with an improved ductile cutting regime. Experimental results showed that solid coatings were more effective than liquid lubricants in enhancing the ductile cutting regime. It was thought that solid coatings induced an additional downward force by resisting material deformation and chip evacuation, thus contributing to suppression of crack opening. It is expected that this research can contribute to the machinability improvements of brittle materials.
  • 5 View
  • 0 Download
Analysis of Surface Characteristics and Spoke-shaped Removal through Ultra-precision Machining of Germanium Materials
Joong kyu Ham, Jong Gyun Kang, Seong Hyeon Park, Hwan Ho Maeng, Min Woo Jeon, Jun Sae Han, Jong Keun Sim, Tae Sik Myung, Young Duk Park, Geon Hee Kim
J. Korean Soc. Precis. Eng. 2023;40(6):441-448.
Published online June 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.037
Germanium, an optical material, has high transmittance and refractive index and low light scattering in the infrared region, and research is being conducted to utilize it in various industrial fields. Various forms of optical lenses can be subjected to ultra-precision machining with high quality surface roughness, and they form accuracy through single point diamond turning (SPDT). In particular, the diamond tool with a negative rake angle and the u-LAM process that applies a 1,064 nm laser to the material have been studied to fabricate brittle materials into optical lenses. In this study, the effects of process parameters, such as laser power (W), spindle speed (RPM), feed rate (mm/min), and depth of cut (μm), on the surface roughness of a sub-nanometer scale and the occurrence of defects during the machining process were analyzed for Germanium materials. The process of removing these defects was also analyzed.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Pattern Machining Technology for Germanium Materials Using Grooving Machining Process
    Joong Kyu Ham, Jong Gyun Kang, Hwan Ho Maeng, Seong Hyeon Park, Jin Yong Heo, Young Durk Park, Geon Hee Kim
    Journal of the Korean Society for Precision Engineering.2024; 41(2): 111.     CrossRef
  • Fabrication and Characterization of Automotive Aspheric Camera Lens Mold based on Ultra-precision Diamond Turning Process
    Ji-Young Jeong, Hwan-Jin Choi, Jong Sung Park, Jong-Keun Sim, Young-Jae Kim, Eun-Ji Gwak, Doo-Sun Choi, Tae-Jin Je, Jun Sae Han
    Journal of the Korean Society for Precision Engineering.2024; 41(2): 101.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
A Study on the Characteristics of Ultra-Precision Surface Cutting of the Mold Material (STAVAX) for the Development of Large Satellite Lens
Young-Jae Kim, Hwan-Jin Choi, Ki-Hun Lee, Woo-Jong Yeo, Ji-Young Jeong, Young-Sik Kim, Geon-Hee Kim
J. Korean Soc. Precis. Eng. 2020;37(11):819-825.
Published online November 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.088
Recently, interest in astronomy has increased internationally, and the technological development of lenses for large space telescopes is progressing. The multi-order diffractive engineered (MODE) lenses can make a large space telescope light and thin. However, because glass lenses are difficult to machine, we have adopted a method of molding at high temperature and high pressure. The STAVAX is commercially available chrome alloy stainless steel, and it is applied as various mold materials. The ultrasonic vibration cutting was adopted for ultra-precision machining because the tool wear is severe when cutting the STAVAX with a diamond tool. To achieve a flat surface for smooth ultrasonic vibration cutting, we performed a precise shape cutting using a CBN tool and confirmed and observed changes in the surface roughness and hardness depending on the cutting conditions. The ultrasonic vibration cutting was performed on the surface of the machine using a CBN tool, and the surface roughness was observed. It was confirmed that the surface roughness was impacted by the surface hardness. The specimens with low surface hardness showed the highest surface roughness at approximately 3 nm.

Citations

Citations to this article as recorded by  Crossref logo
  • Study on Reduction of Pyrolysis Shrinkage in the Carbonization of Furan Precursor by Addition of Vitreous Carbon Powder
    Young Kyu Kim, Dong-in Hong, Hongmin Kim, Suho Ahn, Seok-Min Kim
    Journal of the Korean Society for Precision Engineering.2024; 41(2): 139.     CrossRef
  • Fabrication and Characterization of Automotive Aspheric Camera Lens Mold based on Ultra-precision Diamond Turning Process
    Ji-Young Jeong, Hwan-Jin Choi, Jong Sung Park, Jong-Keun Sim, Young-Jae Kim, Eun-Ji Gwak, Doo-Sun Choi, Tae-Jin Je, Jun Sae Han
    Journal of the Korean Society for Precision Engineering.2024; 41(2): 101.     CrossRef
  • Analysis of Environmental Factors Affecting the Machining Accuracy
    Young Bok Kim, Wee Sam Lee, June Park, Yeon Hwang, June Key Lee
    Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(7): 15.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Limiting Tool Path Error Generated by Corner Blending of CNC Interpolator
Chan-Young Lee, Jaehong Min, Byung-Kwon Min
J. Korean Soc. Precis. Eng. 2017;34(10):695-700.
Published online October 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.10.695
Computer numerical control (CNC) part programs generated by computer-aided manufacturing software are frequently composed of numerous G01 blocks. CNC interpolator applies acceleration and deceleration to generate velocity profile of each block. Therefore, the machining time is increased when the number of G01 blocks is increased. To reduce the machining time, corner blending has been used to smooth the corner shape of adjacent blocks. Because the tool path generated by corner bending dose not reach the commanded endpoint, error of the interpolated tool path exists. The objective of this study was to present a method to determine block overlap time to limit tool path error generated by corner blending. An algorithm to calculate tool path error with respect to block overlap time was also proposed. Performance of the proposed algorithm to limit tool path error was demonstrated in this study.

Citations

Citations to this article as recorded by  Crossref logo
  • Impact of broad ion beam center alignment and mask position on Si wafer cross-section milling rate
    Jong-Han Won, Ki-Hwan Kim, Dong-Young Jang, Geon-Yeong Park
    Micro & Nano Manufacturing.2025;[Epub]     CrossRef
  • Block Overlap Based CNC Interpolator with Variable Time Constant
    Chan-Young Lee, Chang-Ju Kim, Seung Guk Baek, Segon Heo
    Journal of the Korean Society for Precision Engineering.2025; 42(2): 169.     CrossRef
  • Process Monitoring and Part Program Optimization Using Virtual Machine Tools
    Chang-Ju Kim, Segon Heo, Chan-Young Lee, Jung Seok Oh
    Journal of the Korean Society for Precision Engineering.2022; 39(12): 879.     CrossRef
  • Cycle Time Estimation of Block Overlap Based CNC
    Chan-Young Lee, Seung-Kook Ro, Chang Kyu Song, Jeong Seok Oh
    Journal of the Korean Society for Precision Engineering.2022; 39(7): 537.     CrossRef
  • Improved Input Shaping Method for Circular Interpolation of a 2-Axis Positioning System
    Jin Uk Sim, Pil Kyu Choi, Sun-Woong Kwon, Seong-Wook Hong
    Journal of the Korean Society for Precision Engineering.2022; 39(4): 283.     CrossRef
  • CNC Algorithms for Precision Machining: State of the Art Review
    Chan-Young Lee, Seong Hyeon Kim, Tae In Ha, Jaehong Min, Soon-Hong Hwang, Byung-Kwon Min
    Journal of the Korean Society for Precision Engineering.2018; 35(3): 279.     CrossRef
  • 8 View
  • 0 Download
  • Crossref