Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Prosthetic hand"

Article category

Keywords

Publication year

Authors

"Prosthetic hand"

Articles
Wrist Control of Prosthetic Hands with Object Pose Estimation
Seong Bin Park, Sang Ho Yun, Eun Soo Shin, Tae Hwan Choi, Woo Chul Nam
J. Korean Soc. Precis. Eng. 2024;41(5):341-346.
Published online May 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.019
This paper introduces a novel approach for prosthetic wrist control, addressing limitations of traditional electromyography-based methods. While previous research has primarily focused on hand and gripper development, our study emphasizes the importance of wrist mobility for enhancing dexterity and manipulation skills. Leveraging a combination of visual data and inertial sensors, we proposed a system capable of estimating object orientation in real-time, enabling automatic and natural control of a prosthetic wrist. Our deep learning-based model can accurately interpret object posture from the user’s perspective, facilitating seamless wrist movement based on object inclination. In addition, Gaussian filtering was employed to mitigate noise in image-based posture estimation while preserving essential trends. Through this approach, users can achieve natural positioning without needing additional muscle movements, thus significantly improving prosthetic usability and user experience.
  • 5 View
  • 0 Download
Deep Learning-Based Object Detection and Target Selection for Image-Based Grasping Motion Control
Hae June Park, Min Young Kim, Joonho Seo
J. Korean Soc. Precis. Eng. 2020;37(5):389-394.
Published online May 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.158
Hands perform various functions. There are many inconveniences in life without the use of hands. People without the use of hands wear prostheses. Recently, there have been many developments and studies about robotic prosthetic hands performing hand functions. Grasping motions of robotic prosthetic hands are integral in performing various functions. Grasping motions of robotic prosthetic hands are required recognition of grasping targets. A path toward using images to recognize grasping targets exists. In this study, object recognition in images for grasping motions are performed by using object detection based on deep-learning. A suitable model for the grasping motion was examined through three object detection models. Also, we present a method for selecting a grasping target when several objects are recognized. Additionally, it will be used for grasping control of robotic prosthetic hands in the future and possibly enable automatic control robotic prosthetic hands.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on Defect Detection Model of Bone Plates Using Multiple Filter CNN of Parallel Structure
    Song Yeon Lee, Yong Jeong Huh
    Journal of the Korean Society for Precision Engineering.2023; 40(9): 677.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Design of a Regression Model for Four Grasping Patterns and Three Grip Force Intensities of a Myoelectric Prosthetic Hand
Jiho Noh, Woorim Cho, Jae-Hyo Kim
J. Korean Soc. Precis. Eng. 2018;35(8):809-816.
Published online August 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.8.809
Conventional prosthetic hands require users to activate designated muscles or press buttons to select among predefined grasping patterns. These methods are time-consuming and increase muscle fatigue. This study proposes a regression model that differentiates multiple muscle activation patterns allowing the user to select a desired grasping pattern. We classified four hand primitives and three force intensities, which can reflect the intention of prosthetic hand users. An 8-channel band-type sEMG sensor was used to measure myoelectric signals from an amputated upper-arm. To acquire the sEMG data, the amputee was instructed to imagine four hand primitives (fist, open hand, flexion, and extension) with three levels of force intensity (low, medium, and high). Time-domain features (mean average value, variance, waveform length, and root mean square) were extracted from the sEMG signal and classified using a Support Vector Machine. The hand primitives and force intensities had accuracies of 95% and 90%, respectively. Results indicate the regression model reflected the user’s intention to select different grasping patterns, and is thus expected to improve the quality of life of amputees.

Citations

Citations to this article as recorded by  Crossref logo
  • Continuous grip force estimation from surface electromyography using generalized regression neural network
    He Mao, Peng Fang, Yue Zheng, Lan Tian, Xiangxin Li, Pu Wang, Liang Peng, Guanglin Li
    Technology and Health Care.2023; 31(2): 675.     CrossRef
  • Design of Prosthetic Robot Hand and Electromyography-Based Hand Motion Recognition
    Ho Myoung Jang, Jung Woo Sohn
    Journal of the Korean Society for Precision Engineering.2020; 37(5): 339.     CrossRef
  • 8 View
  • 0 Download
  • Crossref