The fabrication of a micro column array using micro EDM (Electrical Discharge Machining) and eccentric tools was presented. With the eccentric tools, micro columns can be easily machined only by feeding the tool vertically, as is the case in mechanical drilling. Moreover, the tool electrode rotates very fast, which is helpful to flush dielectric fluid in the EDM. In this paper, four eccentric tools were machined, and a micro column was machined in a few minutes. Finally, a hundred micro columns with 200-300 μm in a diameter were machined on a metal plate. In this study, vibration-assisted EDM was introduced to improve the machining rate in the fabrication of eccentric tools. Also, the design parameters of eccentric tools were discussed.
Citations
Citations to this article as recorded by
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
Micro Drilling of Single Crystal SiC Using Polycrystalline Diamond Tool Ui Seok Lee, Chan Young Yang, Ju Hyeon Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2021; 38(7): 471. CrossRef
Rapid manufacturing of large diameter Cu micropillars by micro-electrical discharge machining and focused ion beam Ui Seok Lee, Bo Hyun Kim, Sang-Min Kim, Chung-Seog Oh The International Journal of Advanced Manufacturing Technology.2021; 113(3-4): 1153. CrossRef
Electrochemical micromachining (ECM) processes use anodic dissolution of metals to remove workpiece materials. ECM processes including electrochemical milling and drilling, wire electrochemical machining and electrochemical etching offer a better alternative in manufacturing complex features and nano-pattern surface. Electrochemical discharge machining (ECDM) uses high temperature of electrochemical spark, which is suitable process for micro machining of hard brittle and non-conductive materials such as glass and ceramic. In this paper, the state of the art in electrochemical micro machining technologies was reviewed. Also, some hybrid machining methods are introduced.
Citations
Citations to this article as recorded by
Modelling Overcut Dynamics in Electrochemical Discharge Drilling of Alumina (Al
2
O
3
) Ceramics
Shyam Sunder Suthar, Vikas Kumar Transactions of the Indian Ceramic Society.2025; 84(3): 245. CrossRef
Cutting of Chemically Strengthened Glass Using the Combination of Electrochemical Discharge and Grinding Processes Jonghwan Kim, Jihong Hwang Journal of the Korean Society for Precision Engineering.2024; 41(12): 957. CrossRef
Study on Micro Grooving of Tungsten Carbide Using Disk Tool Min Ki Kim, Chan Young Yang, Dae Bo Sim, Ji Hyo Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 123. CrossRef
Machining Characteristics of Micro EDM of Silicon Carbide Ju Hyeon Lee, Chan Young Yang, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 131. CrossRef
Micro Pin Fabrication of Tungsten Carbide Using Polycrystalline Diamond Joo A Park, Ui Seok Lee, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2020; 37(11): 791. CrossRef
Effect of Vibration and Machining Area in the Fabrication of Micro Tool by Reverse EDM Yung Na, Bo Hyun Kim Journal of the Korean Society for Precision Engineering.2019; 36(2): 169. CrossRef
Today, there are lots of progresses in the field of lens researches, especially in the microlens fabrication. Unlike normal lenses, microlens has been widely used as a role of improving the performance of photonic devices which increase the optical precision, and also used in the fields of the display. In this paper, polymer microlenses with 300 μm diameter were replicated through hot-embossing from nickel mold which was fabricated by micro-EDM. After hot-embossing process, the polymer microlenses have a rough surface due to the crater formed by micro-EDM process, which is projected onto the surface of the lenses. The surface of polymer microlenses was polished using solvent vapor to improve the surface roughness of the microlenses without changing their shape. In the experiment, the surface roughness was improved with the processing time and vapor temperature. Also, the roughness improvement was greatly affected by the solubility difference between polymer and solvent.