Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Reaction force compensation"

Article category

Keywords

Publication year

Authors

"Reaction force compensation"

Articles
Input-Shaping Methods for a Linear Motor Motion Stage with a Passive RFC(Reaction Force Compensation) Mechanism
Kang Jo Hwang, Jae Seong Jeong, Hyeong-Joon Ahn
J. Korean Soc. Precis. Eng. 2017;34(12):897-902.
Published online December 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.12.897
The residual vibration during the high acceleration and deceleration of a motion stage degrades the manufacturingsystem productivity and lifespan. Although a passive RFC mechanism with a movable magnet track reduces the residual vibration of the system base, a magnet track resonance may occur according to the motion profile, and the mover inposition error increases due to the residual vibration of the magnet track. We investigated input-shaping methods for a linear motor motion stage with a passive RFC mechanism. An air-bearing linear motor motion stage with the passive RFC mechanism is built, and the dynamic characteristic of the passive RFC mechanism is identified using a freevibration test. Then, mover velocity profiles are generated using various input-shaping methods. Further, the effects of the input-shaping methods on the air-bearing linear motor motion stage are investigated by comparing the magnet track oscillation, settling time, and mover in-position error. Finally, several input-shaping methods are applied to reduce the mover rise-time delay for the proposed linear motor motion stage. A properly shaped input motion profile removes the residual vibration of the passive RFC mechanism without any additional devices, as well as reducing the transmitted reaction force and the in-position error.

Citations

Citations to this article as recorded by  Crossref logo
  • Fuzzy Neural Network Control for a Reaction Force Compensation Linear Motor Motion Stage
    Kyung Ho Yang, Hyeong-Joon Ahn
    International Journal of Precision Engineering and Manufacturing-Smart Technology.2024; 2(2): 109.     CrossRef
  • Software-Based Integral Product Architecture for Modular Motion Control System of a RFC Linear Motor Motion Stage: Model-Based DOB for Residual Vibration Suppression
    Seong Jong Yoo, Hyeong-Joon Ahn
    International Journal of Precision Engineering and Manufacturing.2020; 21(2): 203.     CrossRef
  • Evaluation of Input Shaping Methods for the Nonlinear Vibration System Using a Furuta Pendulum
    Anh-Duc Pham, Hyeong-Joon Ahn
    Journal of the Korean Society for Precision Engineering.2020; 37(11): 827.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
A Study on Vibration Reduction Mechanism of Precision Stage for Laser Direct Imaging
Chang Hoon Seo, Hyeong Gyu Lee, Yong Ho Jeon, Moon Gu Lee
J. Korean Soc. Precis. Eng. 2017;34(6):431-437.
Published online June 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.6.431
Recently, Laser Direct Imaging (LDI) has been used to replace lithography in Flexible Printed Circuit Board (FPCB) manufacturing. However, repeated motion of a linear motor caused residual vibration in the granite on which the workpiece was placed when the motor either accelerated or decelerated. Because the residual vibration made positioning less accurate, there were more defective products and worse productivity. This paper proposes a way to reduce vibration in the granite during the precision stage. First, the frequency domain of the vibrations of a pneumatic vibration isolator is identified. Second, we present the design of the mechanism using a voice coil actuator and a capacitive displacement sensor. Third, we apply a feedback control algorithm based on PID to cancel displacement. Consequently, we are able to propose an optimal way to reduce vibration for the laser direct imaging equipment. The amount of vibration reduction is evaluated in terms of amplitude and settling time.

Citations

Citations to this article as recorded by  Crossref logo
  • Reaction Force Compensator for High‐Speed Precision Stage of Laser Direct Imaging Process
    Chang-hoon Seo, Yong ho Jeon, Hyung-ku Lee, Hyo-young Kim, Moon G. Lee, Francesco Franco
    Shock and Vibration.2018;[Epub]     CrossRef
  • 8 View
  • 0 Download
  • Crossref