Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Residual stress"

Article category

Keywords

Publication year

Authors

"Residual stress"

Articles
The design of a substrate greatly affects the residual stress distribution and the deformation behavior of the repaired region by a directed energy deposition (DED) process. The objective of the present study was to investigate effects of edge length and slope of the substrate on residual stress and deformation characteristics in the vicinity of the repaired region for the repair of the straight damaged region using a DED process. Two-dimensional finite element analysis (FEA) was carried out using SYSWELD. Materials of the substrate and deposited powders were AISI 1045. The maximum residual stress during the deposition decreased when the edge length of the substrate increased, but increased when the slope of the substrate increased. The residual stress after a cooling state increased when the edge length and the slope increased. The displacement of the specimen increased when the slope of the substrate augmented. Finally, the methodology to select a proper edge length and slope of the substrate are discussed in this study.

Citations

Citations to this article as recorded by  Crossref logo
  • Artificial Intelligence Technologies and Applications in Additive Manufacturing
    Selim Ahamed Shah, In Hwan Lee, Hochan Kim
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2463.     CrossRef
  • 8 View
  • 0 Download
  • Crossref
Observation for Crack Generatdion of Wheel Tread Regarding to Brake Cycle
Seok Jin Kwon, Jung Won Seo, Hun Kyu Jun, Dong Hyung Lee
J. Korean Soc. Precis. Eng. 2017;34(12):847-852.
Published online December 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.12.847
The repeated thermal load on the railway wheel for tread brakes has been remarkably tightened due to increase in speed of trains and increase of operation frequency. As overheating and cooling between the wheel and brake block are continuously repeated, the railway wheel is damaged. To understand the process, thermal cracks for wheel tread can be experimentally reproduced under the condition of cyclic frictional heat from brake blocks, through bench experiments using a railway wheel. Thermal cracks generated in the wheel were investigated to observe the cracks’ initiation processes using full-scale brake dynamometer. Results show that as braking energy and braking temperature continued to accumulate, a hot spot appeared on the wheel surface and 2 mm of thermal crack occurred in the wheel rim.
  • 5 View
  • 0 Download
Shot peening is widely used to improve the fatigue life and strength of various mechanical parts and an accurate method is important for the prediction of the compressive residual stress caused by this process. A finite element (FE) model with an elliptical multi-shot is suggested for random-angled impacts. Solutions for compressive residual stress using this model and a normal random vertical-impact one with a spherical multi-shot are obtained and compared. The elliptical multi-shot experimental solution is closer to an X-ray diffraction (XRD) than the spherical one. The FE model’s peening coverage also almost reaches the experimental one. The effectiveness of the model based on an elliptical shot ball is confirmed by these results and it can be used instead of previous FE models to evaluate the compressive residual stress produced on the surface of metal by shot peening in various industries.

Citations

Citations to this article as recorded by  Crossref logo
  • The Effect of Micro-Peening to Improve the Fatigue Characteristic of Reduction Gear of Manned and Unmanned Aircraft
    Taehyung Kim, Jin Woon Seol, Seok Haeng Huh, Joo Hyun Baek
    Journal of the Korean Society for Precision Engineering.2017; 34(9): 603.     CrossRef
  • 10 View
  • 0 Download
  • Crossref