Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"Self-assembled monolayer"

Article category

Keywords

Publication year

Authors

"Self-assembled monolayer"

Articles
Rapid Fabrication of Magnesium Hydroxide Layer on Magnesium Alloy to Improve Corrosion Resistance
JuHan Kim, Byungrak Park, Woonbong Hwang
J. Korean Soc. Precis. Eng. 2019;36(5):493-496.
Published online May 1, 2019
DOI: https://doi.org/10.7736/KSPE.2019.36.5.493
A simple and rapid method of fabricating Mg(OH)2 layer by chemical immersion was developed to improve the corrosion resistance of the magnesium alloy AZ31. The fabricated surface was superhydrophobic with a self-assembled monolayer coating of silane. The surface characteristics were evaluated by Scanning Electron Microscopy (SEM), Energy Dispersive X-ray Spectroscopy (EDS) and X-ray Photoelectron Spectroscopy (XPS). The average water contact angle and sliding angle were determined to be 160° and 7° respectively as a result of wettability test. Potentiodynamic polarization indicated that both Mg(OH)2 layer and the thin layer of air were effective in improving anti-corrosion. This method which is efficient with regard to time and cost would be useful for magnesium industries and its application

Citations

Citations to this article as recorded by  Crossref logo
  • The mechanisms and advances in magnesium-based materials protection against corrosion by the superhydrophobic coatings
    Ludmila B. Boinovich, Kirill A. Emelyanenko, Alexandre M. Emelyanenko
    Surface and Coatings Technology.2024; 481: 130607.     CrossRef
  • 6 View
  • 0 Download
  • Crossref
A Study of Droplet Transmissivity Change by Characteristic of Mesh
Jinyoung Park, Woonbong Hwang
J. Korean Soc. Precis. Eng. 2018;35(6):629-633.
Published online June 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.6.629
Super-wettability surface has various applications and actively studied in many fields. However water droplet transmissivity on super-wettability mesh was not be studied. This work is about water droplet transmissivity of an aluminum mesh with super-wettability on its surface. The mesh which fabricated surface structures with semi-permanent and non-etching process has super-wettability without strength drop of mesh structure. With this process, water droplet transmissivity was measured along various mesh pore per inch and dropping angle. Also water droplet transmissivity along dropping height was measure with super-hydrophobic mesh. As a result, super-hydrophilic mesh shows similar transmissivity behavior with bare mesh which has hydrophilic surface at high pore per inch and high dropping angle, super-hydrophobic 120 mesh shows lowest water droplet transmissivity in various situation.
  • 4 View
  • 0 Download
Fabrication of Superoleophobic Surface on Zinc Substrate Using Anodization and Self-Assembled Monolayer Coating
Wonshik Kwak, Woonbong Hwang
J. Korean Soc. Precis. Eng. 2018;35(5):561-565.
Published online May 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.5.561
In this study, we developed a convenient method to achieve superoleophobic surfaces on zinc substrates by using anodization and self-assembled monolayer coating, and to facilitate the fabrication of superoleophobic surfaces having reentrant structures, even for lower surface tension liquids than 30 mN/m- including hexadecane (γ = 27.5 mN/m). The liquid repellency of the structured surface was validated through observable experimental results; contact angle measurement. The optimal anodizing condition was determined as a critical parameter in building the superoleophobicity. The re-entrant had nanowire/microball structures formed by anodization with a high voltage. Under an optimized morphology by re-entrant structures with fluorination treatment, the contact angle over 150o is achieved, even for hexadecane.
  • 4 View
  • 0 Download
Fabrication of Superhydrophobic Surface on Various Metals Using Abrasive Blasting and Self-Assembled Monolayer Coating
Byungrak Park, Woonbong Hwang
J. Korean Soc. Precis. Eng. 2018;35(2):197-201.
Published online February 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.2.197
A study about superhydrophobic surface started from the analysis of lotus leaf, and superhydrophobic surface fabrication methods have been researched. These methods cannot be used on various metals because the fabrication methods have complex and material-selective processes. In this work, we report a simple fabrication method using abrasive blasting and a self-assembled monolayer coating to produce a superhydrophobic surface. Abrasive blasting was used to create microstructures on metal surfaces. Random peak and valley microstructures were created after abrasive blasting, and a surface profile was measured to analyze the relationship between blasting pressure and a roughness parameter. A hydrophobic material coating was performed by a self-assembled monolayer method. Six kinds of metal surfaces displayed superhydrophobic properties. This utilitarian method could be applied to diverse applications.
  • 5 View
  • 0 Download