Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

4
results for

"Seon Ho Jeong"

Article category

Keywords

Publication year

Authors

"Seon Ho Jeong"

Articles

Prediction of CMP Material Removal Rate based on Pad Surface Roughness Using Deep Neural Network
Jong Min Jeong, Seon Ho Jeong, Yeong Il Shin, Young Wook Park, Hae Do Jeong
J. Korean Soc. Precis. Eng. 2023;40(1):21-29.
Published online January 1, 2023
DOI: https://doi.org/10.7736/JKSPE.022.119
As the digitization of the manufacturing process is accelerating, various data-driven approaches using machine learning are being developed in chemical mechanical polishing (CMP). For a more accurate prediction in contact-based CMP, it is necessary to consider the real-time changing pad surface roughness during polishing. Changes in pad surface roughness result in non-uniformity of the real contact pressure and friction applied to the wafer, which are the main causes of material removal rate variation. In this paper, we predicted the material removal rate based on pressure and surface roughness using a deep neural network (DNN). Reduced peak height (Rpk) and real contact area (RCA) were chosen as the key parameters indicative of the surface roughness of the pad, and 220 data were collected along with the process pressure. The collected data were normalized and separated in a 3 : 1 : 1 ratio to improve the predictive performance of the DNN model. The hyperparameters of the DNN model were optimized through random search techniques and 5 cross-validations. The optimized DNN model predicted the material removal rate with high accuracy in ex-situ CMP. This study is expected to be utilized in data-driven machine learning decision making for cyber-physical CMP systems in the future.

Citations

Citations to this article as recorded by  Crossref logo
  • Precision Engineering and Intelligent Technologies for Predictable CMP
    Somin Shin, Hyun Jun Ryu, Sanha Kim, Haedo Jeong, Hyunseop Lee
    International Journal of Precision Engineering and Manufacturing.2025; 26(9): 2121.     CrossRef
  • Prediction of Normalized Material Removal Rate Profile Based on Deep Neural Network in Five-Zone Carrier Head CMP System
    Yonsang Cho, Myeongjun Kim, Munyoung Hong, Joocheol Han, Hong Jin Kim, Hyunki Kim, Hyunseop Lee
    International Journal of Precision Engineering and Manufacturing-Green Technology.2025; 12(3): 869.     CrossRef
  • 13 View
  • 3 Download
  • Crossref
Analytical Study of Contact Stress on Wafer Edge in CMP
Jong Woo Lee, Da Sol Lee, Seon Ho Jeong, Hyun Jin Kim, Byeong Jun Park, Hae Do Jeong
J. Korean Soc. Precis. Eng. 2018;35(2):157-161.
Published online February 1, 2018
DOI: https://doi.org/10.7736/KSPE.2018.35.2.157
Finite element analysis model was fabricated to confirm stress concentration phenomenon occurring in the wafer edge region in the CMP process, and it was confirmed if it corresponds to the measurement result of the actual pressure sensor. First, contact stress distribution at the edge of the wafer was calculated by the finite element analysis model in which material properties and boundary conditions were set up. As a result, an engineering contact stress distribution profile was obtained. Next, the pressure generated in the edge region of the wafer was measured using a pressure sensor that detects resistance change of the polymer. To compare with the result of the finite element analysis, the non-dimensional sensor signal unit was converted into the pressure unit, and correlation between the analysis and measurement results was obtained. As a result, the finite element analysis result, the actual pressure measurement, and the trend of the results were more than 90%. The results show that the finite element analysis model produced and modified in this study is consistent with the actual behavior trend of the components.

Citations

Citations to this article as recorded by  Crossref logo
  • Variation of Pad Temperature Distribution by Slurry Supply Conditions
    Jinuk Choi, Seonho Jeong, Kyeongwoo Jeong, Haedo Jeong
    Journal of the Korean Society for Precision Engineering.2020; 37(12): 873.     CrossRef
  • 8 View
  • 0 Download
  • Crossref

REGULAR

Effect of Slurry Flow in Spray Slurry Nozzle System on Cu CMP
Da Sol Lee, Seon Ho Jeong, Jong Woo Lee, Jin Yeop Jeong, Hae Do Jeong
J. Korean Soc. Precis. Eng. 2017;34(2):101-106.
Published online February 1, 2017
DOI: https://doi.org/10.7736/KSPE.2017.34.2.101

Citations

Citations to this article as recorded by  Crossref logo
  • Improvement of Interface Diffusion in Cu thin films using SiN/CoWB Passivation Layer
    Jung Woong Kim, Sean Jhin Yoon, Hyun Chan Kim, Youngmin Yun, Jaehwan Kim
    Journal of the Korean Society for Precision Engineering.2018; 35(12): 1163.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Article
Effect of Slurry Flow in Spray Slurry Nozzle System on Cu CMP
Da Sol Lee, Seon Ho Jeong, Jong Woo Lee, Jin Yeop Jeong, Hae Do Jeong
J. Korean Soc. Precis. Eng. 2017;34(2):100-105.
Published online February 1, 2017
The chemical mechanical planarization (CMP) process combines the chemical effect of slurry with the mechanical effect of abrasive (slurry)-wafer-pads The slurry delivery system has a notable effect on polishing results, because the slurry distribution is changed by the supply method. Thus, the investigation of slurry pumps and nozzles with regard to the slurry delivery system becomes important. This paper investigated the effect of a centrifugal slurry pump on a spray nozzle system in terms of uniform slurry supply under a rotating copper (Cu) wafer, based on experimental results and computational fluid dynamics (CFD). In conventional tools, the slurry is unevenly and discontinuously supplied to the pad, due to a pulsed flow caused by the peristaltic pump and distributed in a narrow area by the tube nozzle. Adopting the proposed slurry delivery system provides a higher uniformity and lowered shear stress than usual methods. Therefore, the newly developed slurry delivery system can improve the CMP performance.
  • 3 View
  • 0 Download