Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

3
results for

"Seong-Kyun Cheong"

Article category

Keywords

Publication year

Authors

"Seong-Kyun Cheong"

Articles
A Study on the Shear Characteristics based on the Coverage of Shot-peened Al6061-T6 Bonded with CFRP
Hong Seok Kim, Joon-Hyung Park, Gang-Min Sung, Beom-Joon Kang, Seong-Kyun Cheong, Ki-Hoon Shin
J. Korean Soc. Precis. Eng. 2024;41(1):31-36.
Published online January 1, 2024
DOI: https://doi.org/10.7736/JKSPE.023.081
In this study, a new method of bonding CFRP and Al6061-T6 with epoxy adhesive after shot-peening treatment on the surface of Al6061-T6 specimens was proposed to improve bonding strength of a single lap joint between CFRP and Al6061-T6. More specifically, correlation between shot peening coverage on the Al6061-T6 surface and bonding strength with CFRP was experimentally analyzed. Experimental results showed that the surface roughness and the bonding strength increased as the peening time on the surface of Al6061-T6 increased up to a specific peening time (or coverage). However, the surface roughness and bonding strength decreased again under an over-peening condition of 480 seconds (300% coverage) or more. Therefore, it is necessary to search for the optimal peening time that can maximize bonding strength as well as the fatigue life of parts at a peening time between 320 (200%) and 480 s (300%) through additional experiments in future studies.
  • 5 View
  • 0 Download
A Study on the Improvement of Bonding Strength of Heterojunctions by Applying Laser Surface Treatment to Carbon Fiber Reinforced Plastics
Huan Wang, Seong Cheol Woo, Chung-Ki Sim, Seong-Kyun Cheong, Joohan Kim
J. Korean Soc. Precis. Eng. 2022;39(9):683-689.
Published online September 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.063
The adhesive bonding technology of carbon fiber reinforced plastics (CFRP) and aluminum alloys, is one of the lightweight joining technologies for automobiles. The strength and properties of the bonded joint, depend on the surface of the bonded part that the adhesive touches. Thus, proper surface treatment is one of the most important steps in the bonding process. The laser surface treatment of carbon fiber composites is a new form of green and environmental surface treatment technology, which can effectively clean coatings and pollutants on the surface of materials. It is also possible to improve the bonding shear strength, by changing the microstructure and roughness of the material surface through laser micro texture processing, to form a mechanically interlocked structure. In this study, a pulsed laser was used to treat the surface of CFRP. By changing the scanning line spacing during laser micro texturing, the effect of laser micro texturing on the surface morphology of CFRP and the strength of aluminum alloy bonded joints was investigated. Results show that in the laser micro texturing process, when the scanning line spacing was 0.3 mm, the maximum tensile shear strength was 14.5 MPa, approximately 200% higher than that without laser treatment.
  • 5 View
  • 0 Download
A Study on the Shear Characteristics of the Welding Zone in the Laser Transmission Welding of Heterogeneous Polymer Materials
Dae Cheol Choi, Young Gu Han, Min Cheol Hong, Seong-Kyun Cheong, Ki-Hoon Shin, Ki Jung Na, Jong-Seol Jeong, Ho Hoon Ryu
J. Korean Soc. Precis. Eng. 2022;39(6):417-423.
Published online June 1, 2022
DOI: https://doi.org/10.7736/JKSPE.022.032
In this study, laser transmission welding of two heterogeneous polymeric materials was performed and the effect of laser process parameters on the weld joint strength was investigated by shear test corresponding to ASTM standard D3163-01. Specifically, laser transmission welding of 2 ㎜ thick PMMA and PC/ABS was performed using a thulium laser with wavelength and focusing diameter of 2 ㎛ and 1 ㎜, respectively. The experimental results showed that the bonding strength increases as the laser energy transmitted to the welding zone increases, but too strong energy causes a decrease in the mechanical properties of the heat-affected zone. Thus, it is necessary to find the laser process parameters (Maximum Laser Power and Laser Scan Speed) that can secure sufficient bonding strength within the allowable range where surface defects do not occur in the actual process.

Citations

Citations to this article as recorded by  Crossref logo
  • A Study on the Shear Characteristics based on the Coverage of Shot-peened Al6061-T6 Bonded with CFRP
    Hong Seok Kim, Joon-Hyung Park, Gang-Min Sung, Beom-Joon Kang, Seong-Kyun Cheong, Ki-Hoon Shin
    Journal of the Korean Society for Precision Engineering.2024; 41(1): 31.     CrossRef
  • Infrared Saturable Absorption Properties of Tungstenene Nanosheets for Passively Q-Switched 1.9 μm Solid-State Laser
    Chuanrui Zhao, Zhengping Wang, Guowei Liu, Pingzhang Yu, Xinguang Xu
    ACS Applied Nano Materials.2023; 6(20): 19499.     CrossRef
  • 8 View
  • 0 Download
  • Crossref