Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Seung Mun Lee"

Article category

Keywords

Publication year

Authors

"Seung Mun Lee"

Articles
Fabrication of Dual-morphing Vascular Stents Using Additive-lathe Printing of Shape Memory Polymers
Yuseok Kim, Seung Mun Lee, Suk-Hee Park
J. Korean Soc. Precis. Eng. 2023;40(10):797-803.
Published online October 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.077
In this study, we present the fabrication of dual-morphing vascular stents using an additive-lathe printing method and two different shape-memory polymers. Traditional additive manufacturing techniques confront significant challenges in producing vascular stents with complex, hollow, mesh-like structures due to limitations such as a flat printing bed and the placement of supports. To overcome these obstacles, we employed a lathe-type additive manufacturing system with a rotatable base substrate, enabling precise fabrication of cylindrical-shaped stents. To achieve shape transformability, we used shapememory polymers as the stent materials, offering the advantage of minimally invasive surgery. Two distinct shape-memory polymers, with different transition temperatures (35 and 55oC), were printed using the additive-lathe method. The printed stents consisted of two distinct parts that underwent dual-stage morphological changes at the different temperatures. By manipulating the printing paths, the dual-morphing properties of the stents could be adjusted in both longitudinal and circumferential directions. This innovative approach could be a solution to several limitations associated with the application of stents in diseased vascular tissues with complex shapes, facilitating minimal invasion during surgical procedures.
  • 5 View
  • 0 Download
A Study on Enhanced Uniformity of Artificial Flexible Vascular Grafts Fabricated by Dip-Coating Process
Yeong Seo Kim, Seung Mun Lee, Yu Seok Kim, Da Hye Yoo, Suk-Hee Park
J. Korean Soc. Precis. Eng. 2021;38(5):365-371.
Published online May 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.009
Three-dimensional (3-D) printing, with its capability for producing arbitrary shapes, has shown great potential for usage in patient-specific tissue engineering. However, if artificial tissues are fabricated directly through typical 3-D printing processes, the mechanical properties, particularly for softness or flexibility, significantly differ from those of natural tissues, resulting in inappropriate side effects during surgeries using vascular grafts. However, this can be overcome through the indirect 3-D printing of templates created with a thin-film formation process, such as dip coating. Dip coating is performed in two steps, including dipping/withdrawing a target base template from a polymer solution, and then drying the solvent into a solid thin film on the template. However, it is difficult to form a uniform layer on the arbitrary template because the gravitational flow of the coated solution disturbs the uniformity of the template as the solvent is drying. Therefore, we minimized the flow around the template after dip coating by rapidly removing the solvent removal by dipping the solution-coated template into ethanol. This reduced the solvent removal time and increased the viscosity of the coated solution, thereby alleviating the gravitational flow of the coated solution, and allowing us to successfully fabricate flexible vascular grafts.

Citations

Citations to this article as recorded by  Crossref logo
  • Fabrication of Long Porous Vascular Grafts Using Nozzle-Transfer Dip-Coating System
    Seung-Mun Lee, Yeong-Seo Kim, Suk-Hee Park
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(7): 11.     CrossRef
  • A Study on the Mechanical Properties of a Biocompatible Conduit Structure based on Electrospun Fibers
    Jeong Hwa Kim, Jaewon Choi, Yong Jun Yoon, Young Hun Jeong
    Journal of the Korean Society for Precision Engineering.2022; 39(10): 739.     CrossRef
  • 7 View
  • 0 Download
  • Crossref