Railway axles are among critical components ensuring safe and efficient train operations. They are particularly susceptible to damage mechanisms such as fretting wear and fatigue. Fretting induced by high contact pressure and microslip between contact surface can significantly deteriorate fatigue strength at the contact edge of the press-fit section. Recent research has been conducted to enhance axle strength and reliability. However, fretting wear or microcrack formation at the wheel-press-fit zone of axles is still an active area of investigation. Accurately analyzing fretting wear is challenging due to its sensitivity to numerous factors such as changes in friction coefficient, influence of wear particles, and selection of an appropriate wear model. This paper aimed to establish a comprehensive analysis method for fretting wear in interference-fitted axles using finite element analysis (FEA) and numerical analysis techniques. Two wear models were applied in simulations: an Archard wear model and an energy-based wear model. Analysis results were compared with experimental data from rotating bending fatigue press-fit specimens. This comparison will help validate the proposed analysis method and assess the effectiveness and accuracy of different wear models in predicting fretting wear in press-fit axles.
In this study, slip phenomenon that occurs during trajectory tracking motion of an omni-directional mobile robot based on Mecanum wheels was analyzed. Mecanum wheels which generate the omni-directionality to the mobile robot comprise a centered rim wheel and passive sub-rollers. In forward and backward motion, they function like usual wheels to enable rolling along the ground. However, in sideways motion, they create lateral motion of the mobile robot from the rotational actuation using their peculiar structural configuration, during which slip of the sub-rollers occurs. Unnecessary over-slip of the sub-rollers causes tracking errors of the mobile robot motion. To analyze the properties and reasons for the slip phenomenon, squared and circular trajectory tacking experiments were performed. From the experiments, it was observed that sideways motion generated respectively larger tracking errors than forward and backward motion. The geometric analysis regarding the tracking error generation was discussed using the Mecanum wheel structure. Finally, it was confirmed that suspension mechanism to provide four Mecanum wheels of the mobile robot with even reaction forces on the ground is necessary.
Citations
Citations to this article as recorded by
Auxetic and Holonomic Mobile Robot for Enhanced Navigation in Constrained Terrains Cheonghwa Lee, Jinwon Kim, Hyeongyeong Jeong, Hyunbin Park, Baeksuk Chu Journal of Field Robotics.2025; 42(8): 4414. CrossRef
Development of Pipe Robot by Using Mecanum Wheels Daeyoung Kim, Soonwook Park, Hojoong Lee, Jongpil Kim, Wonji Chung, Dohoon Kwak Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(2): 58. CrossRef
Mobile Robot Overcoming Narrow Space Using Negative Poisson’s Ratio Jinwon Kim, Hyeongyeong Jeong, Baeksuk Chu Journal of the Korean Society for Precision Engineering.2021; 38(7): 479. CrossRef