We propose the measurement method for location errors in a horizontal 4-axis machine tool using a touch trigger probe and a sphere artifact. Location errors (type of geometric errors), are values that do not change with the position of each feed axis because these errors are usually fixed in an assembly procedure. There are seven location errors in a horizontal 4-axis machine tool; three squareness errors in three linear axes and two squareness and two offset errors in a rotary axis. The positions of center point of sphere artifact on a rotary axis are measured by a touch trigger probe mounted on a tool axis. Because measured center points are expressed by seven location errors via the homogeneous transformation matrix, location errors can be separated by analyzing measured data. To validate the proposed method, measurement experiments were performed on a horizontal 4-axis machine tool. Measurement results were verified by comparing before and after compensation.
Citations
Citations to this article as recorded by
Sequential Measurement of Position-independent Geometric Errors in the Rotary and Spindle Axes of a Hybrid Parallel Kinematic Machine Seung-Han Yang, Dong-Mok Lee, Hoon-Hee Lee, Kwang-Il Lee International Journal of Precision Engineering and Manufacturing.2020; 21(12): 2391. CrossRef