Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

5
results for

"Suk-Hee Park"

Article category

Keywords

Publication year

Authors

"Suk-Hee Park"

Articles
Fabrication of Dual-morphing Vascular Stents Using Additive-lathe Printing of Shape Memory Polymers
Yuseok Kim, Seung Mun Lee, Suk-Hee Park
J. Korean Soc. Precis. Eng. 2023;40(10):797-803.
Published online October 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.077
In this study, we present the fabrication of dual-morphing vascular stents using an additive-lathe printing method and two different shape-memory polymers. Traditional additive manufacturing techniques confront significant challenges in producing vascular stents with complex, hollow, mesh-like structures due to limitations such as a flat printing bed and the placement of supports. To overcome these obstacles, we employed a lathe-type additive manufacturing system with a rotatable base substrate, enabling precise fabrication of cylindrical-shaped stents. To achieve shape transformability, we used shapememory polymers as the stent materials, offering the advantage of minimally invasive surgery. Two distinct shape-memory polymers, with different transition temperatures (35 and 55oC), were printed using the additive-lathe method. The printed stents consisted of two distinct parts that underwent dual-stage morphological changes at the different temperatures. By manipulating the printing paths, the dual-morphing properties of the stents could be adjusted in both longitudinal and circumferential directions. This innovative approach could be a solution to several limitations associated with the application of stents in diseased vascular tissues with complex shapes, facilitating minimal invasion during surgical procedures.
  • 5 View
  • 0 Download
A Study on Enhanced Uniformity of Artificial Flexible Vascular Grafts Fabricated by Dip-Coating Process
Yeong Seo Kim, Seung Mun Lee, Yu Seok Kim, Da Hye Yoo, Suk-Hee Park
J. Korean Soc. Precis. Eng. 2021;38(5):365-371.
Published online May 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.009
Three-dimensional (3-D) printing, with its capability for producing arbitrary shapes, has shown great potential for usage in patient-specific tissue engineering. However, if artificial tissues are fabricated directly through typical 3-D printing processes, the mechanical properties, particularly for softness or flexibility, significantly differ from those of natural tissues, resulting in inappropriate side effects during surgeries using vascular grafts. However, this can be overcome through the indirect 3-D printing of templates created with a thin-film formation process, such as dip coating. Dip coating is performed in two steps, including dipping/withdrawing a target base template from a polymer solution, and then drying the solvent into a solid thin film on the template. However, it is difficult to form a uniform layer on the arbitrary template because the gravitational flow of the coated solution disturbs the uniformity of the template as the solvent is drying. Therefore, we minimized the flow around the template after dip coating by rapidly removing the solvent removal by dipping the solution-coated template into ethanol. This reduced the solvent removal time and increased the viscosity of the coated solution, thereby alleviating the gravitational flow of the coated solution, and allowing us to successfully fabricate flexible vascular grafts.

Citations

Citations to this article as recorded by  Crossref logo
  • Fabrication of Long Porous Vascular Grafts Using Nozzle-Transfer Dip-Coating System
    Seung-Mun Lee, Yeong-Seo Kim, Suk-Hee Park
    Journal of the Korean Society of Manufacturing Process Engineers.2023; 22(7): 11.     CrossRef
  • A Study on the Mechanical Properties of a Biocompatible Conduit Structure based on Electrospun Fibers
    Jeong Hwa Kim, Jaewon Choi, Yong Jun Yoon, Young Hun Jeong
    Journal of the Korean Society for Precision Engineering.2022; 39(10): 739.     CrossRef
  • 7 View
  • 0 Download
  • Crossref
Flexible Sensor on the Basis of Aligned Piezoelectric Nanofibers for Measurement of Small Deformations and its Application to Pulse Monitoring
Han Bit Lee, Young Won Kim, Jeanho Park, Jonghun Yoon, Suk-Hee Park
J. Korean Soc. Precis. Eng. 2020;37(2):125-131.
Published online February 1, 2020
DOI: https://doi.org/10.7736/JKSPE.019.137
Recently, applying nanoscale functional materials, there have been great advances in the flexible sensor system, which provides a large number of applications for soft electronics, such as skin-attachable sensors, artificial electronic skins, and soft robotic systems. Here, we developed a highly sensitive and flexible device on the basis of polymeric piezoelectric nanofibers and elastomeric packing structures. To produce the nanofibers, we applied the electrospinning process with a representative piezoelectric co-polymer, poly (vinylidenefluoride-co-trifluoroethylene) (PVDF-TrFE). Unlike the conventional electrospinning, we applied an anisotropic fiber collection system, which could obtain uniaxially aligned nanofiber array. The aligned nanofibers were sandwich-packed with bridge-shaped PDMS substrates, thereby integrating the flexible piezoelectric sensor. As an external force made a deflection of the bridge in the sensor, the embedded nanofibers generated piezoelectricity in a longitudinal direction of the fibers. The piezoelectric sensor generated good discernable outputs versus the varied mechanical input deflection from tens of micrometers to the sub-micrometer. With this great sensing ability, we could monitor heart pulse signals on the wrist skin by measuring tiny deflections generated from the expansion of the radial artery underneath the skin. Our study suggests a potential application of flexible sensor in the field of wearable health-monitoring medical systems.
  • 5 View
  • 0 Download
Recent Progress in the Nanoscale Additive Layer Manufacturing Process Using Two-Photon Polymerization for Fabrication of 3D Polymeric, Ceramic, and Metallic Structures
Cheol-Woo Ha, Tae-Woo Lim, Yong Son, Suk-Hee Park, Sang-Hu Park, Dong-Yol Yang
J. Korean Soc. Precis. Eng. 2016;33(4):265-270.
Published online April 1, 2016
Recently, many studies have been conducted on the nano-scale fabrication technology using twophoton-absorbed polymerization induced by a femtosecond laser. The nano-stereolithography process has many advantages as a technique for direct fabrication of true three-dimensional shapes in the range over several microns with sub-100 nm resolution, which might be difficult to obtain by using general nano/microscale fabrication technologies. Therefore, two-photon induced nano-stereolithography has been recently recognized as a promising candidate technology to fabricate arbitrary 3D structures with sub-100 nm resolution. Many research works for fabricating novel 3D nano/micro devices using the two-photon nano-stereolithography process, which can be utilized in the NT/BT/IT fields, are rapidly advancing.
  • 2 View
  • 0 Download
Current Status of Biomedical Applications using 3D Printing Technology
Suk-Hee Park, Jean Ho Park, Hye Jin Lee, Nak Kyu Lee
J. Korean Soc. Precis. Eng. 2014;31(12):1067-1076.
Published online December 1, 2014
To date, biomedical application of three-dimensional (3D) printing technology remains one of the most important research topics and business targets. A wide range of approaches have been attempted using various 3D printing systems with general materials and specific biomaterials. In this review, we provide a brief overview of the biomedical applications using 3D printing techniques, such as surgical tool, medical device, prosthesis, and tissue engineering scaffold. Compared to the other applications of 3D printed products, the scaffold fabrication should be performed with careful selection of bio-functional materials. In particular, we describe how the biomaterials can be processed into 3D printed scaffold and applied to tissue engineering area.
  • 3 View
  • 0 Download