Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Sumin Yang"

Article category

Keywords

Publication year

Authors

"Sumin Yang"

Article
Risk Prediction in Daily Activities and Falls based on Deep Learning
Seunghee Lee, Bummo Koo, Sumin Yang, Dongkwon Kim, Youngho Kim
J. Korean Soc. Precis. Eng. 2023;40(12):1003-1009.
Published online December 1, 2023
DOI: https://doi.org/10.7736/JKSPE.023.102
Predicting fall risk is necessary for rescue and accident prevention in the elderly. In this study, deep learning regression models were used to predict the acceleration sum vector magnitude (SVM) peak value, which represents the risk of a fall. Twenty healthy adults (aged 22.0±1.9 years, height 164.9±5.9 cm, weight 61.4±17.1 kg) provided data for 14 common daily life activities (ADL) and 11 falls using IMU (Inertial Measurement Unit) sensors (Movella Dot, Netherlands) at the S2. The input data includes information from 0.7 to 0.2 seconds before the acceleration SVM peak, encompassing 6-axis IMU data, as well as acceleration SVM and angular velocity SVM, resulting in a total of 8 feature vectors used to model training. Data augmentations were applied to solve data imbalances. The data was split into a 4 : 1 ratio for training and testing. The models were trained using Mean Squared Error (MSE) and Mean Absolute Error (MAE). The deep learning model utilized 1D-CNN and LSTM. The model with data augmentation exhibited lower error values in both MAE (1.19 g) and MSE (2.93g²). Low-height falls showed lower predicted acceleration peak values, while ADLs like jumping and sitting showed higher predicted values, indicating higher risks.
  • 5 View
  • 0 Download