Solid rocket motor (SRM) for anti-tank guided weapons has a lateral rocket nozzle as a structural feature. The lateral nozzle is twisted 30 degrees in the direction of flight. Due to the structural characteristics, it generates side forces in the direction of flight. The generated side forces cause forces and moments in the entire guided weapon, affecting missile stability and accuracy during flight. Therefore, it is very important to accurately measure the force and moment during the development and production of SRM. For example, in quality specification, acceptance criteria for thrust, side force, and moment were written. This study introduced a method for measuring thrust, side force, and moment of SRM using 6- component sensor. Depending on the size of the 6-component sensor and configuration of test device, results measured in the same SRM differed. During designing of the test device, structural stability and natural frequency must be grasped, and through this, it is possible to manufacture a measuring device that does not disturb the SRM. In this study, simply purchasing a sensor with high performance for precise measurement was not the answer. Instead, the measurement accuracy was increased by properly configuring the test device to suit the measuring environment.