The plate for the multi-stage reducer is a component of a traveling motor and is required for high wear resistance and maintaining precision. The plates that are mainly manufactured by the press process have burrs on the edges of the material after the general press shear process. Since burrs have a great influence on assembly and shape precision according to product characteristics, a post-treatment process for removing burrs is mandatory, and several studies have been conducted on this topic. In this study, a flattening process was developed to remove the burrs. First, the piercing and blanking process forming analysis was performed to find the process conditions for burr removal. Subsequently, the flattening process forming analysis was performed, and the reliability of the analysis was verified through an experiment using the derived process conditions.
Due to the ever-advancing technology in various production industries, the materials of machined products have been diversified from simple steel materials to composite materials, powder metallurgy materials and silicon. Powder metallurgy materials have excellent mechanical/chemical properties, but have disadvantages such as; difficulty in processing using conventional processing methods, increased processing cost and generation of a large amount of dust. In addition, the need for the development of specialized machine tools increases due to the disadvantages such as the frequent occurrence of burrs in tapping and drilling. In order to solve the problem of machining of high hardness sintered products, a method of maximizing productivity and efficiency by processing the powder metallurgy material before it is completely sintered is being studied. In this study, structural analysis of a turret center for the verification of structural stability of a turret center for processing powder metallurgy materials was carried out. In addition, the shape was optimized to improve the structural stability and weight and presented an optimal model. The study aimed at developing more reliable turret center through the optimized model.
Citations
Citations to this article as recorded by
Automatic Measurement of Nanoimage Based on Machine Vision and Powder Metallurgy Materials Zhenghong Jiang, Chunrong Zhou, Haichang Zhang Advances in Materials Science and Engineering.2022; 2022: 1. CrossRef
Shape Optimization for Lightweight of the Metal 3D Printing Based Hybrid Machining Center Won-Young Jeong, Ho-In Jeong, Choon-Man Lee Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(2): 80. CrossRef
Shape Optimization for Lightweight of the Line Center for Processing Complex Shape Parts Do-Hyun Park, Ho-In Jeong, Sang-Won Kim, Choon-Man Lee Journal of the Korean Society of Manufacturing Process Engineers.2021; 20(8): 86. CrossRef
Structural Safety of the Incinerator Transfer Conveyor Roller Chain Using GBO Bo-Ram Lee, Gyeong-Seop Park, Ill-Soo Kim Journal of the Korean Society of Manufacturing Technology Engineers.2020; 29(1): 9. CrossRef