In this paper, we propose acoustophoretic microfluidic devices with an acoustic transparent polymer wall using a simple and low-cost fabrication method followed by MEMS (Micro-Electromechanical Systems) processes. Generally, due to the acoustic standing wave between two opposing walls in microfluidic channel, the particle focusing lines are fixed according to the applied frequency. In the proposed device, however, it is possible to place the particle focusing lines in the arbitrary position within the fluidic domain through the optimized width of polymer wall. The PDMS (Polydimethylsiloxane) mold with thin layer was used as the sealing layer between the Si substrate and cover glass, as well as the decoupling layer between the acoustic boundary and fluidic boundary. The thickness of PDMS mold needed to be minimized to decrease the heating by the acoustic energy absorption of PDMS layer, which was successfully made using the spin-coating of PDMS and the UV tape transfer method. The acoustophoretic device with thin PDMS layer and optimized width of PDMS wall can be applied, for biotechnological applications such as the separation of blood cells and micro-particles.
Fabrication of inverse-tapered structure remains as a problem in the fabrication of oleophobic surface mostly due to the complications and the high cost of processes. In this paper, we propose a simple and low-cost fabrication method of inverse-tapered structured oleophobic surface using micromolding in capillaries (MIMIC) and microtransfer molding followed by MEMS processes. Silicon wafer molds for the formation of inverse-tapered structure were made using MEMS processes such as photolithography and anisotropic KOH etching of silicon wafer. The geometry of structure could be changed by controlling the etching depth of the silicon wafer mold. After covering the surface of the mold using flat UV tape, the formed space between mold and UV tape was filled with pre-cured PDMS by capillary force and then cured in oven. The tapered structure on UV tape was transferred and bonded to glass wafer by O₂ plasma treatment. The fabricated inverse-tapered structure was coated with a fluoroalkylsilane monolayer to reduce its surface energy. The wetting behaviors were investigated by the contact angle (CA) measurement of hexadecane droplets. This study demonstrates that an inversetapered structure can be fabricated on a substrate using micromolding in capillaries and microtransfer molding, whose surface shows the superoleophobicity.
Citations
Citations to this article as recorded by
Fabrication of Acoustophoretic Device with Lateral Polymer Wall for Micro-Particle Separation Sungdong Kim, Su Jin Ji, Song-I Han, Arum Han, Young Hak Cho Journal of the Korean Society for Precision Engineering.2022; 39(5): 379. CrossRef
Fabrication of anisotropic wetting surface with asymmetric structures using geometrical similarity and capillary force Ye-Eun Lee, Dong-Ki Lee, Young Hak Cho Micro and Nano Systems Letters.2019;[Epub] CrossRef