In mechanical braking systems, there are hot spots on the surface of a braking disc due to thermal deformation with a high thermal gradient. Controlling such hot spots is important for extending the life of a braking disc. In this study, surface temperatures of railway brake discs were monitored using infrared (IR) thermal imaging technique. A highspeed infrared camera with a maximum speed of 380 Hz was used to monitor surface temperature changes of the braking disc. Braking tests were performed with a full-scale dynamometer. During the braking test, the surface temperature change of the braking disc were monitored using a high-speed infrared camera. Hot spots and thermal damage observed on the surface of railway brake discs during braking tests were quantitatively analyzed using infrared thermographic images. Results revealed that monitoring disc surface temperature using IR thermographic technique can be a new method for predicting surface temperature changes without installing a thermocouple inside the disc.