Nanoparticle laser sintering is one of the vital technologies in additive manufacturing. Numerous processes such as freeform surfaces or seamless parts have been proposed for the fabrication of complex components, however, the resolution and quality of the processes do not meet the standard necessary for practical applications. Therefore, selective laser sintering is used to fabricate electrode patterns in high-precision manufacturing field. Despite the various advantages, laser sintering process generates defects on the pattern with one of the major contributing factors being the Marangoni flow. In this study, the laser sintering process was used to determine the relationship between the nanoparticle blending conditions and the microstructure of the fabricated electrode pattern through the control of the nanoparticles density and laser characteristics such as power, pulse duration, and scan speed. As a result, the conditions for Marangoni flow were analyzed in relation to the concentration of the nanoparticle solution and laser irradiation parameters. More severe Marangoni flow was produced with the solution having a low weight percent of nanoparticles, while the width of the pattern was uniform when the pulsed laser was applied using a high peak power to achieve the same total amount of energy.
There are two well-known synthetic approaches for copper nanowires (CuNWs): ethylenediamine (EDA)-mediated synthesis and alkylamine-mediated synthesis. The alkylamine-mediated synthesis produces very high aspect ratio nanowires but requires an autoclave for high-pressure environments, and a long reaction time, which normally is above 12 hours. The EDA-mediated synthesis can be carried out under normal conditions and requires 30 min. The CuNWs produced by this method have an average aspect ratio lower than 1000 and are produced in a lower yield. In this paper, the researchers present a modified EDA-mediated synthesis to improve the yield and reduce the synthesis time. When NaOH and Cu(NO3)2 were replaced with KOH and CuCl2, respectively and the reaction temperature was kept at room temperature, the synthesis time was shortened to 15 min. Moreover, the aspect ratio of the as-synthesized Cu NWs increased to 650 and the synthesis yields raised from 17.73% to 80.16%.