In this study, the structural integrity of an engine-generator support structure of hybrid drone is verified through finite element (FE) analysis and experimental investigation. From preliminary experiments, critical failures in four columns of the support structure were observed. Due to the repeated cyclic loads induced by the engine-generator operation, the results of the FE simulation pointed out that fatigue failure is the main cause. To improve the structural integrity, the geometric shape and the material of the structural members are modified and changed, and the safety factor is also reviewed using static structural analysis. The possibility of critical resonance is evaluated through FEM-associated modal analysis and a series of vibration tests. As result, it is confirmed that the re-designed support structure was structurally improved with enough safety margin through FE analysis and experimental investigation, and fatigue life by comparing the predicted value and S-N curve of the material used to the support structure was improved.
Citations
Citations to this article as recorded by
A Study on Structural Integrity Improvement of Cargo Drone through FE Simulation and Topology Optimization Jong Seop Seong, Ha-Young Shi, Beom-Soo Kang, Tae-Wan Ku Journal of the Korean Society for Precision Engineering.2023; 40(9): 685. CrossRef
In electro-galvanizing line to manufacture the electro-galvanized steel sheet, polishing system is required to maintain clean surface of conductor roll and to secure the quality of the steel sheet. At the same time, prediction and decision of the replacement cycle for felt material and its brush installed in the polishing system is also important because the brush is directly contacted on the conductor roll surface. In this study, the polishing system has been designed which the brush is repetitive translating according to the longitudinal direction of the conductor roll. Furthermore, the prediction on the wear-life of the felt material used for the brush is performed using the contact pressure extracted by finite element analysis. And to verify the predicted wear-life of the felt material, the experimental study is also carried out. From the comparison result between the predicted and the measured wear-life of the felt material, it is presented that the wear-life and the replacement cycle of the felt material are well predicted by considering a wear compensation factor, and the wear compensation factor is useful and reasonable.
The aim of this study is to obtain the useful design guideline for high impulsive force device with an isolation system by the analytic approach of dynamics characteristics. In this study, the high impulsive force system was modeled and analyzed in view of multi-body dynamics, and verified the modeling and analysis result by the experiment of the high impulsive force device. Additionally, the dynamic analysis was performed for the isolation system with the selected coefficients of elastic spring and damper selected. Experimental result for the high impulsive force device with the isolation system was compared and analyzed. From the result, it was confirmed that the design guideline for the isolation system of the high impulsive force device was useful.
Recently, Exhaust Gas Recirculation (EGR) system which re-flew a cooled exhaust gas from vehicles burning diesel as fuel to a combustion chamber of engine has been used to solve the serious air pollution. For the design and mass production of EGR system, it is essential to ensure structural integrity evaluation. The EGR system consisted of ten dimpled oval core rectangular tubes, two fix-plates, two coolant pipes, shell body and two flanges in this study. To confirm the safety of the designed system, finite element modeling about each component such as the dimpled oval core tube with the dimpled shape and others was carried out. The reliability of EGR system against exhaust gas flow with high temperature was investigated by flow and pressure analysis in the system. Also, thermal and strength analysis were verified the safety of EGR system against temperature change in the shell and tubes. Furthermore, modal analysis using ANSYS was also performed. From the results of FE analysis, there were confirmed that EGR system was safe against the flow of exhaust gas, temperature change in EGR system and vibration on operation condition, respectively.