In this paper, we introduce a recently built screwing robotic system for the bolt assembly of elastic steel plates. The screwing robotic system consists of two vision cameras (having narrow and wide fields of view), a collaborative robot with a 10 kg payload, and a motorized screw drill with a pneumatic bolt supplier. Due to the elasticity of the steel plates, they tend to statically deform and dynamically vibrate during tasks under the conventional setting of automatic screwing, often resulting in screw failures. Thus, we designed a compliant connector device to be attached between the robot end-effector and screw drill that can absorb vibration and shock during the bolt assembly to improve the screwing quality and success rate of the bolt assembly. Upon adopting this screwing robotic system with the compliant connector, the success rate of the bolt assembly was improved from 56% to 100%.
Human rights at poor working condition is the severe problem in modern manufacturing system. The industrial dual-arm robot is being developed to meet these social issues fundamentally. The dual-arm robot can work instead of human workers. We developed the new dual-arm robot for manufacturing mobile phone and TV. It has advantages such as the solo controller for both arms, the human sized body and arms. The software platform for the industrial dual-arm robot is being developed which has strength in its convenience and intelligence compared to conventional the robot software platforms. Here the development of the dual-arm robot software platform is introduced.
Recently, the requirement of automation in the cell production system is increasing due to a decrease of skilled workers who are the key point of a cell production system. This paper proposes a dual-arm robot designed and implemented with consideration of being applied to a cell production line of cellular phone. A specification was derived from the analysis of production process and the consideration of configuration for human-robot cooperation. Design and implementation results of the proposed dual-arm robot were suggested and the feasibility was verified through the demonstration of the proposed robot in some of packaging job of cellular phone.
The introduction of industrial intelligent robot using vision sensor has been interested in automated factory. 2D and 3D vision sensors have used to recognize object and to estimate object pose, which is for packaging parts onto a complete whole. But it is not trivial task due to illumination and various types of objects. Object image has distorted due to illumination that has caused low reliability in recognition. In this paper, recognition method of complex shape object has been proposed. An accurate object region has detected from combined binary image, which has achieved using DoG filter and local adaptive binarization. The object has recognized using neural network, which is trained with sub-divided object class according to object type and rotation angle. Predefined shape model of object and maximal slope have used to estimate the pose of object. The performance has evaluated on ETRI database and recognition rate of 96% has obtained.
These days, the interests on the high speed handling robots are increasing because it is important to get down the unit cost of production to get the price competitiveness. The parallel kinematic mechanism is more suitable to implement the high speed robot system as well known. The moving parts of the high speed parallel robot have to be designed for light weight. But the vibration motion is induced by the light weight links because they drive in high acceleration and deceleration. In this reason, the structural analysis of the high speed parallel kinematic robot is very important in the design process. In this paper, the study on the structural analysis of a high speed parallel robot has been done and the research results will be introduced.