Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

1
results for

"Temperature modeling"

Article category

Keywords

Publication year

Authors

"Temperature modeling"

Article
Variation of Pad Temperature Distribution by Slurry Supply Conditions
Jinuk Choi, Seonho Jeong, Kyeongwoo Jeong, Haedo Jeong
J. Korean Soc. Precis. Eng. 2020;37(12):873-880.
Published online December 1, 2020
DOI: https://doi.org/10.7736/JKSPE.020.078
Chemical mechanical planarization (CMP) is a wafer planarization process that uses chemical reactions initiated by slurry and mechanical actions by pad asperity. The progression of CMP causes temperature deviation on the pad surface. Increase in process temperature results in increased material removal rate (MRR). So, pad temperature distribution is closely related to With-In Wafer Non-Uniformity (WIWNU). In this study, the pad temperature distribution is modelled from the energy perspective and slurry supply location is suggested to reduce temperature deviation. An energy supplying expression was created by setting the micro area and substituting the applied pressure, relative velocity, and process time. The energy and temperature distributions were observed as quite consistent and the temperature peak matched well with highest friction heat point (HFHP). Based on the model expression, the slurry injection position was set to the center of pad, the HFHP and wafer center, and change in temperature distribution was measured. A comparative analysis was carried out employing the existing method that uses multiple nozzles rather than single nozzles and the deviation was reduced by about 18.5% when slurry was supplied to the HFHP for a single nozzle and by 24.7% when the largest flow rate was supplied for multiple nozzles.
  • 5 View
  • 0 Download