Skip to main navigation Skip to main content
  • E-Submission

JKSPE : Journal of the Korean Society for Precision Engineering

OPEN ACCESS
ABOUT
BROWSE ARTICLES
EDITORIAL POLICIES
FOR CONTRIBUTORS

Page Path

2
results for

"Temperature stability"

Article category

Keywords

Publication year

Authors

"Temperature stability"

Articles
Progresses in Pneumatic Temperature Control Technique for Ultra-Precise Control and Measurement of Thermal Environment
Bomi Nam, Wukchul Joung
J. Korean Soc. Precis. Eng. 2024;41(10):759-776.
Published online October 1, 2024
DOI: https://doi.org/10.7736/JKSPE.024.081
In this paper, we introduce a new pneumatic temperature control technique and its application to precision thermometry. The method controls temperature by adjusting gas pressure through the unique thermohydraulic linkage of the pressure-controlled loop heat pipe (PCLHP). Due to this temperature-pressure linkage, the PCLHP-based pneumatic temperature control achieves exceptional control speed, stability, and precision. To fully understand this method, we systematically investigated the effects of various influencing parameters, such as heat load, sink temperature, and rate of pressure change, on the stability of temperature control. In addition, we successfully achieved closed-type pneumatic temperature control using a mechanically-driven gas pressure controller. We also developed a hybrid PCLHP that incorporates a heat pipe liner into the isothermal region to further improve the temperature uniformity of the pneumatically-controlled temperature field. With this technique, we significantly improved the accuracy of the fixed point of the International Temperature Scale of 1990 by using inside nucleation of the freezing temperature of tin and determining the liquidus temperature of tin. In this paper, we summarize the results of these diverse efforts in characterizing the pneumatic temperature control technique, along with theoretical analyses.
  • 5 View
  • 0 Download
Progresses in Ultra-Precise Temperature Control and Thermometry Techniques
Wukchul Joung
J. Korean Soc. Precis. Eng. 2021;38(12):905-915.
Published online December 1, 2021
DOI: https://doi.org/10.7736/JKSPE.021.053
In this work, recent advances in temperature control techniques and the resulting contemporary progress in precision thermometry are addressed together with a broad review of traditional temperature control methods. Particular emphases are placed on clarification of the nature of temperature control and its classification, and the relevant technical issues are addressed based on this clarification and classification. Being a thermodynamic quantity having the same dimension as energy, temperature of an object is traditionally controlled by means of the changing rate of energy (Heat) transfer; however, this approach has led to a slow, less stable, and uneven temperature field due to inherent limits caused by finite properties of materials. To overcome this problem, thermodynamic characteristics of two-phase heat transfer devices, such as heat pipes and loop heat pipes, have been extensively employed where high-speed nature of fluid flow was exploited to realize a uniform temperature field, and unique thermodynamic linkage between saturation temperature and pressure was successfully applied to attain a fast, stable, and predictable temperature control of a finite-sized isothermal space. Representative examples and applications are provided in the context of unique features of the introduced contemporary temperature control techniques, which caused significant scientific strides in the related fields.

Citations

Citations to this article as recorded by  Crossref logo
  • Progresses in Pneumatic Temperature Control Technique for Ultra-Precise Control and Measurement of Thermal Environment
    Bomi Nam, Wukchul Joung
    Journal of the Korean Society for Precision Engineering.2024; 41(10): 759.     CrossRef
  • 9 View
  • 0 Download
  • Crossref