In this paper, we propose a deep Q-network-based resource allocation method for efficient communication between a base station and multiple Unmanned Aerial Vehicles (UAVs) in environments with limited wireless resources. This method focused on maximizing the throughput of UAV to Infrastructure (U2I) links while ensuring that UAV to UAV (U2U) links could meet their data transmission time constraints, even when U2U links share the wireless resource used by U2I links. The deep Q-network agent uses the Channel State Information (CSI) of both U2U and U2I links, along with the remaining time for data transmission, as state, and determines optimal Resource Block (RB) and transmission power for each UAV. Simulation results demonstrated that the proposed method significantly outperformed both random allocation and CSI-based greedy algorithms in terms of U2I link throughput and the probability of meeting U2U link time constraints.
In this study, a novel input signal transformer is introduced to remove an overshoot and steady-state error that hinder stable tracking and landing of an unmanned aerial vehicle (UAV) based on image recognition, and the performance is verified. The Input Signal Transformer (IST) is designed in the shape of a sigmoid function to attenuate or amplify the input signal to resolve the aforementioned problems. For the verification of the UAV control system based on the IST, the UAV, target, and sensors were implemented in a virtual environment using the robot operating system (ROS). And data exchange structure and control system were built by the ROS-based message communication. A simulation was performed to confirm the elimination of the overshoot and steady-state error when the UAV to which the above control system was applied tracks and lands a fixed target and a moving target. As a result of the simulation, when the IST was not used, the UAV performed an unstable because of the overshoot and could not land on the target by the steady-state error. Conversely, in the case of using IST, it was confirmed that the flight was stable and landed successfully.