Germanium, an optical material, has high transmittance and refractive index and low light scattering in the infrared region, and research is being conducted to utilize it in various industrial fields. Various forms of optical lenses can be subjected to ultra-precision machining with high quality surface roughness, and they form accuracy through single point diamond turning (SPDT). In particular, the diamond tool with a negative rake angle and the u-LAM process that applies a 1,064 nm laser to the material have been studied to fabricate brittle materials into optical lenses. In this study, the effects of process parameters, such as laser power (W), spindle speed (RPM), feed rate (mm/min), and depth of cut (μm), on the surface roughness of a sub-nanometer scale and the occurrence of defects during the machining process were analyzed for Germanium materials. The process of removing these defects was also analyzed.
Citations
Citations to this article as recorded by
A Study on Pattern Machining Technology for Germanium Materials Using Grooving Machining Process Joong Kyu Ham, Jong Gyun Kang, Hwan Ho Maeng, Seong Hyeon Park, Jin Yong Heo, Young Durk Park, Geon Hee Kim Journal of the Korean Society for Precision Engineering.2024; 41(2): 111. CrossRef
Fabrication and Characterization of Automotive Aspheric Camera Lens Mold based on Ultra-precision Diamond Turning Process Ji-Young Jeong, Hwan-Jin Choi, Jong Sung Park, Jong-Keun Sim, Young-Jae Kim, Eun-Ji Gwak, Doo-Sun Choi, Tae-Jin Je, Jun Sae Han Journal of the Korean Society for Precision Engineering.2024; 41(2): 101. CrossRef